搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单靶溅射制备铜锌锡硫薄膜及原位退火研究

赵其琛 郝瑞亭 刘思佳 刘欣星 常发冉 杨敏 陆熠磊 王书荣

单靶溅射制备铜锌锡硫薄膜及原位退火研究

赵其琛, 郝瑞亭, 刘思佳, 刘欣星, 常发冉, 杨敏, 陆熠磊, 王书荣
PDF
导出引用
  • 采用衬底加热溅射铜锌锡硫(CZTS)四元化合物单靶制备CZTS薄膜,并研究原位退火对制备薄膜的影响.结果表明:在溅射结束后快速升温并保持一段时间,所得到的样品相比于未原位退火的CZTS薄膜结晶质量更好,且表面更平整致密;原位退火后的CZTS薄膜太阳电池性能参数也相应地有所提升,其开路电压(Voc)为575 mV,短路电流密度(Jsc)为8.32 mA/cm2,光电转换效率达到1.82%.
      通信作者: 郝瑞亭, ruitinghao@semi.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61774130,11474248,61176127,61006085)、国际科技合作重点项目(批准号:2011DFA62380)和教育部博士点基金(批准号:20105303120002)资助的课题.
    [1]

    Jiang M L, Yan X Z 2013 Sol. Cells Res. Appl. Prospect.5 107

    [2]

    Liu H, Xue Y M, Qiao Z X, Li W, Zhang C, Yin F H, Feng S J 2015 Acta Phys. Sin. 64 068801 (in Chinese) [刘浩, 薛玉明, 乔在祥, 李微, 张超, 尹富红, 冯少君 2015 物理学报 64 068801]

    [3]

    Yan C, Chen J, Liu F Y 2014 J. Alloy. Compod. 610 486

    [4]

    Wang W, Winkler M T 2014 Energy Mater. 4 7

    [5]

    Kato T, Hiroi H, Sakai N 2012 Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition Frankfurt, Germany 2236

    [6]

    Liu F F, He Q, Zhou Z Q, Sun Y 2014 Acta Phys. Sin.63 067203 (in Chinese) [刘芳芳, 何青, 周志强, 孙云 2014 物理学报 63 067203]

    [7]

    Liu F F, Sun Y, He Q 2014 Acta Phys. Sin. 63 047201 (in Chinese) [刘芳芳, 孙云, 何青 2014 物理学报 63 047201]

    [8]

    Mao Q N, Zhang X Y, Li X G, He J X, Yu P R, Wang D 2014 Acta Phys. Sin. 63 118802 (in Chinese) [毛启楠, 张晓勇, 李学耕, 贺劲鑫, 于平荣, 王东 2014 物理学报 63 118802]

    [9]

    Brammertz G, Buffière M, Oueslati S 2013 Appl. Phys. Lett. 103 163904

    [10]

    Katagiri H, Jimbo K, Maw W S 2009 Thin Solid Films 517 2455

    [11]

    Xie M, Zhuang D, Zhao M, Li B J, Cao M J, Song J 2014 Vacuum 101 146

    [12]

    He J, Sun L, Chen Y, Jiang J C, Yang P X, Chu J H 2014 RSC Adv. 4 43080

    [13]

    Jo Y H, Mohanty B C, Yeon D H 2015 Sol. Energy Mater. Sol. Cells 132 136

    [14]

    Nakamura R, Kunihiko T, Hisao U 2014 Jpn. J. Appl. Phys. 53 02BC10

    [15]

    Lin Y P, Chi Y F, Hsieh T E 2016 J. Alloy. Compod. 654 498

    [16]

    Shi G, Li Y J, Zuo S H, Jiang J C, Hu G J, Chu J H 2011 Infrared Millim. Waves. 30 1001

    [17]

    Jiang F, Ikeda S 2014 Energy Mater. 4 403

    [18]

    Ericson T, Kubart T, Scragg J J 2012 Thin Solid Films 520 7093

    [19]

    Gurel T, Sevik C, Ça G 2011 Phys. Rev. B: Condens. 84 896

    [20]

    Tanaka T, Kawasaki D 2016 Phys. Status Solidi Topics 36 67

    [21]

    Chalapathi U, Jayasree Y, Uthana S, Sundara R V 2015 Vacuum 117 121

    [22]

    Katagiri H, Jimbo K 2011 IEEE Photovolt. Spec. Conf. 23 003516

    [23]

    Tanaka K, Fukui Y, Moritake N, Uchiki H 2011 Sol.Energy Mater. Sol. Cells 95 838

    [24]

    Chen S Y, Wang L W, Walsh A 2012 Appl. Phys. 101 223901

    [25]

    Fernandes P A, Salom P M P, Cunha A F 2010 Appl. Phys. 43 215403

    [26]

    Sammi K, Misol O, Woo K K 2013 Thin Solid Films. 549 59

    [27]

    Tapas K C, Devendra T 2012 Sol. Energy Mater. Sol. Cells 101 46

    [28]

    Zhang J, Long B, Cheng S Y 2013 Int. J. Photoenergy ID 986076 1

    [29]

    Vipul K, Patel K K, Patel S J 2013 J. Crystal Growth 362 174

    [30]

    Li J, Wang H, Luo M 2016 Sol. Energy Mater. Sol. Cells 149 242

    [31]

    Li J, Kim S Y, Nam D 2017 Sol. Energy Mater. Sol. Cells 159 447

    [32]

    Sun K W, Su Z H, Han Z L, Liu F Y, Lai T Q, Li J, Liu Y X 2014 Acta Phys. Sin. 63 018801 (in Chinese) [孙凯文, 苏正华, 韩自力, 刘芳洋, 赖延清, 李劼, 刘业翔 2014 物理学报 63 018801]

    [33]

    Kong F T, Gunawan O, Kuwahara M 2016 Sol. Energy Mater. Sol. Cells 6 184

  • [1]

    Jiang M L, Yan X Z 2013 Sol. Cells Res. Appl. Prospect.5 107

    [2]

    Liu H, Xue Y M, Qiao Z X, Li W, Zhang C, Yin F H, Feng S J 2015 Acta Phys. Sin. 64 068801 (in Chinese) [刘浩, 薛玉明, 乔在祥, 李微, 张超, 尹富红, 冯少君 2015 物理学报 64 068801]

    [3]

    Yan C, Chen J, Liu F Y 2014 J. Alloy. Compod. 610 486

    [4]

    Wang W, Winkler M T 2014 Energy Mater. 4 7

    [5]

    Kato T, Hiroi H, Sakai N 2012 Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition Frankfurt, Germany 2236

    [6]

    Liu F F, He Q, Zhou Z Q, Sun Y 2014 Acta Phys. Sin.63 067203 (in Chinese) [刘芳芳, 何青, 周志强, 孙云 2014 物理学报 63 067203]

    [7]

    Liu F F, Sun Y, He Q 2014 Acta Phys. Sin. 63 047201 (in Chinese) [刘芳芳, 孙云, 何青 2014 物理学报 63 047201]

    [8]

    Mao Q N, Zhang X Y, Li X G, He J X, Yu P R, Wang D 2014 Acta Phys. Sin. 63 118802 (in Chinese) [毛启楠, 张晓勇, 李学耕, 贺劲鑫, 于平荣, 王东 2014 物理学报 63 118802]

    [9]

    Brammertz G, Buffière M, Oueslati S 2013 Appl. Phys. Lett. 103 163904

    [10]

    Katagiri H, Jimbo K, Maw W S 2009 Thin Solid Films 517 2455

    [11]

    Xie M, Zhuang D, Zhao M, Li B J, Cao M J, Song J 2014 Vacuum 101 146

    [12]

    He J, Sun L, Chen Y, Jiang J C, Yang P X, Chu J H 2014 RSC Adv. 4 43080

    [13]

    Jo Y H, Mohanty B C, Yeon D H 2015 Sol. Energy Mater. Sol. Cells 132 136

    [14]

    Nakamura R, Kunihiko T, Hisao U 2014 Jpn. J. Appl. Phys. 53 02BC10

    [15]

    Lin Y P, Chi Y F, Hsieh T E 2016 J. Alloy. Compod. 654 498

    [16]

    Shi G, Li Y J, Zuo S H, Jiang J C, Hu G J, Chu J H 2011 Infrared Millim. Waves. 30 1001

    [17]

    Jiang F, Ikeda S 2014 Energy Mater. 4 403

    [18]

    Ericson T, Kubart T, Scragg J J 2012 Thin Solid Films 520 7093

    [19]

    Gurel T, Sevik C, Ça G 2011 Phys. Rev. B: Condens. 84 896

    [20]

    Tanaka T, Kawasaki D 2016 Phys. Status Solidi Topics 36 67

    [21]

    Chalapathi U, Jayasree Y, Uthana S, Sundara R V 2015 Vacuum 117 121

    [22]

    Katagiri H, Jimbo K 2011 IEEE Photovolt. Spec. Conf. 23 003516

    [23]

    Tanaka K, Fukui Y, Moritake N, Uchiki H 2011 Sol.Energy Mater. Sol. Cells 95 838

    [24]

    Chen S Y, Wang L W, Walsh A 2012 Appl. Phys. 101 223901

    [25]

    Fernandes P A, Salom P M P, Cunha A F 2010 Appl. Phys. 43 215403

    [26]

    Sammi K, Misol O, Woo K K 2013 Thin Solid Films. 549 59

    [27]

    Tapas K C, Devendra T 2012 Sol. Energy Mater. Sol. Cells 101 46

    [28]

    Zhang J, Long B, Cheng S Y 2013 Int. J. Photoenergy ID 986076 1

    [29]

    Vipul K, Patel K K, Patel S J 2013 J. Crystal Growth 362 174

    [30]

    Li J, Wang H, Luo M 2016 Sol. Energy Mater. Sol. Cells 149 242

    [31]

    Li J, Kim S Y, Nam D 2017 Sol. Energy Mater. Sol. Cells 159 447

    [32]

    Sun K W, Su Z H, Han Z L, Liu F Y, Lai T Q, Li J, Liu Y X 2014 Acta Phys. Sin. 63 018801 (in Chinese) [孙凯文, 苏正华, 韩自力, 刘芳洋, 赖延清, 李劼, 刘业翔 2014 物理学报 63 018801]

    [33]

    Kong F T, Gunawan O, Kuwahara M 2016 Sol. Energy Mater. Sol. Cells 6 184

  • [1] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响. 物理学报, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [2] 张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔. 太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征. 物理学报, 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [3] 谢大弢, 赵夔, 王莉芳, 朱凤, 全胜文, 孟铁军, 张保澄, 陈佳洱. 用磁控溅射和真空硒化退火方法制备高质量的铜铟硒多晶薄膜. 物理学报, 2002, 51(6): 1377-1382. doi: 10.7498/aps.51.1377
    [4] 王宝义, 张仁刚, 张 辉, 万冬云, 魏 龙. ZnO退火条件对硫化法制备的ZnS薄膜特性的影响. 物理学报, 2005, 54(4): 1874-1878. doi: 10.7498/aps.54.1874
    [5] 张仁刚, 王宝义, 张 辉, 马创新, 魏 龙. 不同参数溅射的ZnO薄膜硫化后的特性. 物理学报, 2005, 54(5): 2389-2393. doi: 10.7498/aps.54.2389
    [6] 刘浩, 薛玉明, 乔在祥, 李微, 张超, 尹富红, 冯少君. 铜锌锡硫薄膜材料及其器件应用研究进展. 物理学报, 2015, 64(6): 068801. doi: 10.7498/aps.64.068801
    [7] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜. 物理学报, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
    [8] 张传军, 邬云骅, 曹鸿, 高艳卿, 赵守仁, 王善力, 褚君浩. 不同衬底和CdCl2退火对磁控溅射CdS薄膜性能的影响. 物理学报, 2013, 62(15): 158107. doi: 10.7498/aps.62.158107
    [9] 张鑫鑫, 靳映霞, 叶晓松, 王茺, 杨宇. 高速率沉积磁控溅射技术制备Ge点的退火生长研究. 物理学报, 2014, 63(15): 156802. doi: 10.7498/aps.63.156802
    [10] 陈明, 周细应, 毛秀娟, 邵佳佳, 杨国良. 外加磁场对射频磁控溅射制备铝掺杂氧化锌薄膜影响的研究. 物理学报, 2014, 63(9): 098103. doi: 10.7498/aps.63.098103
    [11] 王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹. W掺杂ZnO透明导电薄膜的理论及实验研究. 物理学报, 2012, 61(13): 137801. doi: 10.7498/aps.61.137801
    [12] 王延峰, 张晓丹, 黄茜, 杨富, 孟旭东, 宋庆功, 赵颖. B掺杂ZnO透明导电薄膜的实验及理论研究. 物理学报, 2013, 62(24): 247802. doi: 10.7498/aps.62.247802
    [13] 王延峰, 孟旭东, 郑伟, 宋庆功, 翟昌鑫, 郭兵, 张越, 杨富, 南景宇. V掺杂ZnO透明导电薄膜研究. 物理学报, 2016, 65(8): 087802. doi: 10.7498/aps.65.087802
    [14] 王延峰. F、Al共掺杂ZnO透明导电薄膜的制备及掺杂机理研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200580
    [15] 王延峰, 张晓丹, 黄茜, 刘阳, 魏长春, 赵颖. 室温制备低电阻率高透过率H, W共掺杂ZnO薄膜. 物理学报, 2013, 62(1): 017803. doi: 10.7498/aps.62.017803
    [16] 曾湘安, 艾斌, 邓幼俊, 沈辉. 硅片及其太阳电池的光衰规律研究. 物理学报, 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [17] 姚鑫, 丁艳丽, 张晓丹, 赵颖. 钙钛矿太阳电池综述. 物理学报, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [18] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化. 物理学报, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [19] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [20] 曾隆月, 戴松元, 王孔嘉, 孔凡太, 胡林华, 潘 旭, 史成武. 染料敏化纳米ZnO薄膜太阳电池机理初探. 物理学报, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
  • 引用本文:
    Citation:
计量
  • 文章访问数:  820
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-25
  • 修回日期:  2017-07-04
  • 刊出日期:  2017-11-05

单靶溅射制备铜锌锡硫薄膜及原位退火研究

  • 1. 云南师范大学太阳能研究所, 可再生能源材料先进技术与制备教育部重点实验室, 云南省农村能源工程重点实验室, 昆明 650500
  • 通信作者: 郝瑞亭, ruitinghao@semi.ac.cn
    基金项目: 

    国家自然科学基金(批准号:61774130,11474248,61176127,61006085)、国际科技合作重点项目(批准号:2011DFA62380)和教育部博士点基金(批准号:20105303120002)资助的课题.

摘要: 采用衬底加热溅射铜锌锡硫(CZTS)四元化合物单靶制备CZTS薄膜,并研究原位退火对制备薄膜的影响.结果表明:在溅射结束后快速升温并保持一段时间,所得到的样品相比于未原位退火的CZTS薄膜结晶质量更好,且表面更平整致密;原位退火后的CZTS薄膜太阳电池性能参数也相应地有所提升,其开路电压(Voc)为575 mV,短路电流密度(Jsc)为8.32 mA/cm2,光电转换效率达到1.82%.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回