搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟

杨文龙 韩浚生 王宇 林家齐 何国强 孙洪国

引用本文:
Citation:

聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟

杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国

Molecular dynamics simulation on the glass transition temperature and mechanical properties of polyimide/functional graphene composites

Yang Wen-Long, Han Jun-Sheng, Wang Yu, Lin Jia-Qi, He Guo-Qiang, Sun Hong-Guo
PDF
导出引用
  • 应用分子模拟方法,建立了聚酰亚胺(polyimide,PI),石墨烯及羧基、氨基、羟基功能化石墨烯模型,探究了聚酰亚胺和石墨烯,聚酰亚胺和功能化石墨烯共混后复合材料的力学性能和玻璃化转变温度(Tg).研究结果表明,羧基修饰的石墨烯与PI复合后材料力学性能增加显著,其杨氏模量和剪切模量分别为4.946 GPa和1.816 GPa.不同官能团修饰的石墨烯引入PI后材料的Tg均有不同程度下降;未修饰的石墨烯与PI复合后,其Tg(559.30 K)较纯PI的Tg(663.57 K)降幅最大;而羧基修饰的石墨烯与PI复合后Tg(601.61 K)降幅最小.计算比较了PI/石墨烯复合材料体系密度、溶解度参数、相互作用能、弹性系数和氢键平均密度,研究发现羧基修饰石墨烯/PI复合材料的密度为1.396 g·cm-3,溶解度参数为23.51 J1/2·cm-3/2,其相互作用能与氢键平均密度最大,弹性系数显示羧基修饰石墨烯与PI组成的复合材料内部最均匀.计算结果表明,羧基功能化石墨烯可以大幅度提高PI的力学性能,增强石墨烯与PI之间的相互作用可以减少复合材料Tg的降幅程度.此基体间相互作用的研究方法可以作为预测聚合物基纳米复合材料结构与性能的有效工具,以期为材料的设计与应用提供理论指导.
    Polyimide (PI) and the functional graphene modified with nano-composite models of hydroxyl,carboxyl and amino groups are realized by a multi-scale modeling method.The influences of the functional graphenes with different functional groups on the microstructure,mechanical and thermodynamic performances of polyimide-based composite models are investigated by the molecular dynamics simulation.The cell parameters,solubility parameters,elastic coefficients, Young's moduli,shear moduli,and the values of glass-transition temperature (Tg) of polyimide-based composite models are calculated with the COMPASS force field.Moreover,the interaction energies and hydrogen bonds of composites are analyzed to explore the internal mechanisms for improving mechanical and thermodynamic properties.The results demonstrate that the density of PI matrix is 1.312 g·cm-3 and the solubility parameter of PI matrix is 21.84 J1/2·cm-3/2, which are in accord with the actual PI parameters.The Young's moduli of the composites increase obviously with the increase of the interaction energy between the PI matrix and the functional graphenes with hydroxyl,carboxyl and amino groups at 298 K and 1 atm.The Young's moduli of PI and PI/graphene with carboxyl groups are respectively 3.174 GPa and 4.946 GPa and the shear moduli are respectively 1.139 GPa and 1.816 GPa.Comparing with pure PI/graphene composite,the average hydrogen bonds increase obviously after graphene has been functionalized.Because the interaction between the functional graphene and PI matrix increases,the movement of PI molecular chain needs more energy,and the rigidity of the composite is enhanced.The Tg of the composite also relates to the interaction energy.It is also found that the Tg of the nano-composite effectively decreases by the hybrid functional graphene.The Tg of pure PI is 663.57 K,while the Tg values of PI/graphene and PI/graphene with carboxyl groups nanocomposites are 559.30 K and 601.61 K,respectively.Moreover,the density and interaction energy of hydrogen bonds of the PGCOOH are 784.81 kcal/mol and 1.396 g/cm3,respectively,which are the largest among their counterparts of the composite systems.The elastic coefficients show that the PGCOOH is more uniform than that other composites.All of these indicate that the graphene with carboxyl group can greatly enhance the interaction between graphene and PI,improve the mechanical properties and adjust the Tg value of the PI matrix.The chemical modification of interaction energy in matrix is deemed to be of benefit to the improvement in composite performance,and the interaction energy calculation is considered to be an effective method of predicting the structures and performances of new composites.
      通信作者: 杨文龙, wlyang@hrbust.edu.cn
    • 基金项目: 国家自然基金(批准号:61372013)和黑龙江省自然科学基金(批准号:E201258)资助的课题.
      Corresponding author: Yang Wen-Long, wlyang@hrbust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61372013) and Natural Science Foundation of Heilongjiang Province, China (Grant No. E201258).
    [1]

    Hernández M, Bernal M D M, Verdejo R, Ezquerra T A, López-Manchado M A 2012 Compos. Sci. Technol. 73 40

    [2]

    Yang X, Tu Y, Li L, Shang S, Tao X M 2010 ACS Appl. Mater. Inter. 2 1707

    [3]

    Gong L, Kinloch I A, Young R J, Riaz I, Jalil R,Novoselov K S 2010 Physics 22 2694

    [4]

    Kuilla T, Bhadra S, Yao D, Kim N H, Bose S, Lee J H 2010 Prog. Polym. Sci. 35 1350

    [5]

    Mortazavi B, Ahzi S 2013 Carbon 63 460

    [6]

    Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y 2011 J. Mater. Chem. 21 13290

    [7]

    Huang T, Xin Y, Li T, Nutt S, Su C, Chen H, Liu P, Lai Z 2013 ACS Appl. Mater. Inter. 5 4878

    [8]

    Chen D, Zhu H, Liu T 2010 ACS Appl. Mater. Inter. 2 3702

    [9]

    Huang T, Lu R, Su C, Wang H, Guo Z, Liu P, Huang Z, Chen H, Li T 2012 ACS Appl. Mater. Inter. 4 2699

    [10]

    Awasthi A P, Lagoudas D C, Hammerand D C 2009 Model. Simul. Mater. Sci. Eng. 17 015002

    [11]

    Boukhvalov D W, Katsnelson M I 2009 J. Phys.: Condens. Matter 21 344205

    [12]

    Ha H W, Choudhury A, Kamal T, Kim D H, Park S Y 2012 ACS Appl. Mater. Inter. 4 4623

    [13]

    Luong N D, Hippi U, Korhonen J T, Soininen A J, Ruokolainen J, Johansson L, S, Nam J D, Sinh L H, Seppälä J 2011 Polymer 52 5237

    [14]

    Mortazavi B, Ahzi S 2013 Carbon 63 460

    [15]

    Yoonessi M, Shi Y, Scheiman D A, Lebron-Colon M, Tigelaar D M, Weiss R A, Meador M A 2012 ACS Nano 6 7644

    [16]

    Park O K, Kim S G, You N H, Ku B C, Hui D, Lee J H 2014 Compos. Part B: Eng. 56 365

    [17]

    Kim H, Kobayashi S, AbdurRahim M A, Zhang M J,Khusainova A, Hillmyer M A, Abdala A A, Macosko C W 2011 Polymer 52 1837

    [18]

    Tripathi S N, Saini P, Gupta D, Choudhary V 2013 J.Mater. Sci. 48 6223

    [19]

    Liang J, Yi H, Long Z, Yan W, Ma Y, Guo T, Chen Y 2009 Adv. Funct. Mater. 19 2297

    [20]

    Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S 2011 Carbon 49 198

    [21]

    Wang J Y, Yang S Y, Huang Y L, Tien H W, Chin W K, Ma C C M 2011 J. Mater. Chem. 21 13569

    [22]

    Park O K, Hwang J Y, Goh M, Lee J H, Ku B C, You N H 2013 Macromolecules 46 3505

    [23]

    Wang J, Li L, Wei Z D (in Chinese) [王俊, 李莉, 魏子栋 2016 物理化学学报 32 321]

    [24]

    Hu J, Ruan X, Jiang Z, Chen Y 2009 Nano Lett. 9 2730

    [25]

    Medhekar N V, Ramasubramaniam A, Ruoff R S, Shenoy V B 2010 ACS Nano 4 2300

    [26]

    Rissanou A N, Harmandaris V 2014 Soft Matter 10 2876

    [27]

    Rissanou A N, Harmandaris V 2013 J. Nanopart. Res. 5 1

    [28]

    Lin J Q, Li X K, Yang W L, Sun H G, Xie Z B, Xiu H J, Lei Q Q 2015 Acta Phys. Sin. 64 126202 (in Chinese) [林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉 2015 物理学报 64 126202]

    [29]

    Compton O C, Cranford S W, Putz K W, An Z, Brinson L C, Buehler M J, Nguyen S T 2011 ACS Nano 6 2008

    [30]

    Sheng Y Z, Hua Y, Li J Y, Miao S 2013 Chem. Res. Chin. U. 29 788

    [31]

    Chen J, Zhao D, Jin X, Wang C, Wang D, Ge H 2014 Compos. Sci. Technol. 97 41

    [32]

    Huang T, Xin Y, Li T, Nutt S, Su C, Chen H, Liu P, Lai Z 2013 ACS Appl. Mater. Inter. 5 4878

    [33]

    Zhang C, Hao R, Liao H, Hou Y 2013 Nano Energy 2 88

    [34]

    Fu Y Z, Hu S Q, Lan Y H, Liu Y Q 2010 Acta Chim. Sin. 68 809 (in Chinese) [付一政, 胡双启, 兰艳花, 刘亚青 2010 化学学报 68 809]

    [35]

    Zhou G D, Duan L Y 2008 Basic of Structural Chemistry (4th Ed.) (Beijing: Peking University Press) p324 (in Chinese) [周公度, 段连运 2008 结构化学基础 (第4版) (北京: 北京大学出版社) 第324页]

    [36]

    Chen Z L 2007 Theory and Practice of Molecular Simulation (Beijing: Chemical Industry Press) p110 [陈正隆 2007分子模拟的理论与实践(北京: 化学工业出版社) 第110–112页]

    [37]

    Ding M X 2006 Polyimide: Chemistry, Relationship between Structure and Properties and Materials (Beijing: Science Press) pp225, 226 (in Chinese) [丁孟贤 2006 聚酰亚胺––化学、结构与性能的关系及材料(北京: 科学出版社)第225, 226页]

  • [1]

    Hernández M, Bernal M D M, Verdejo R, Ezquerra T A, López-Manchado M A 2012 Compos. Sci. Technol. 73 40

    [2]

    Yang X, Tu Y, Li L, Shang S, Tao X M 2010 ACS Appl. Mater. Inter. 2 1707

    [3]

    Gong L, Kinloch I A, Young R J, Riaz I, Jalil R,Novoselov K S 2010 Physics 22 2694

    [4]

    Kuilla T, Bhadra S, Yao D, Kim N H, Bose S, Lee J H 2010 Prog. Polym. Sci. 35 1350

    [5]

    Mortazavi B, Ahzi S 2013 Carbon 63 460

    [6]

    Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y 2011 J. Mater. Chem. 21 13290

    [7]

    Huang T, Xin Y, Li T, Nutt S, Su C, Chen H, Liu P, Lai Z 2013 ACS Appl. Mater. Inter. 5 4878

    [8]

    Chen D, Zhu H, Liu T 2010 ACS Appl. Mater. Inter. 2 3702

    [9]

    Huang T, Lu R, Su C, Wang H, Guo Z, Liu P, Huang Z, Chen H, Li T 2012 ACS Appl. Mater. Inter. 4 2699

    [10]

    Awasthi A P, Lagoudas D C, Hammerand D C 2009 Model. Simul. Mater. Sci. Eng. 17 015002

    [11]

    Boukhvalov D W, Katsnelson M I 2009 J. Phys.: Condens. Matter 21 344205

    [12]

    Ha H W, Choudhury A, Kamal T, Kim D H, Park S Y 2012 ACS Appl. Mater. Inter. 4 4623

    [13]

    Luong N D, Hippi U, Korhonen J T, Soininen A J, Ruokolainen J, Johansson L, S, Nam J D, Sinh L H, Seppälä J 2011 Polymer 52 5237

    [14]

    Mortazavi B, Ahzi S 2013 Carbon 63 460

    [15]

    Yoonessi M, Shi Y, Scheiman D A, Lebron-Colon M, Tigelaar D M, Weiss R A, Meador M A 2012 ACS Nano 6 7644

    [16]

    Park O K, Kim S G, You N H, Ku B C, Hui D, Lee J H 2014 Compos. Part B: Eng. 56 365

    [17]

    Kim H, Kobayashi S, AbdurRahim M A, Zhang M J,Khusainova A, Hillmyer M A, Abdala A A, Macosko C W 2011 Polymer 52 1837

    [18]

    Tripathi S N, Saini P, Gupta D, Choudhary V 2013 J.Mater. Sci. 48 6223

    [19]

    Liang J, Yi H, Long Z, Yan W, Ma Y, Guo T, Chen Y 2009 Adv. Funct. Mater. 19 2297

    [20]

    Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S 2011 Carbon 49 198

    [21]

    Wang J Y, Yang S Y, Huang Y L, Tien H W, Chin W K, Ma C C M 2011 J. Mater. Chem. 21 13569

    [22]

    Park O K, Hwang J Y, Goh M, Lee J H, Ku B C, You N H 2013 Macromolecules 46 3505

    [23]

    Wang J, Li L, Wei Z D (in Chinese) [王俊, 李莉, 魏子栋 2016 物理化学学报 32 321]

    [24]

    Hu J, Ruan X, Jiang Z, Chen Y 2009 Nano Lett. 9 2730

    [25]

    Medhekar N V, Ramasubramaniam A, Ruoff R S, Shenoy V B 2010 ACS Nano 4 2300

    [26]

    Rissanou A N, Harmandaris V 2014 Soft Matter 10 2876

    [27]

    Rissanou A N, Harmandaris V 2013 J. Nanopart. Res. 5 1

    [28]

    Lin J Q, Li X K, Yang W L, Sun H G, Xie Z B, Xiu H J, Lei Q Q 2015 Acta Phys. Sin. 64 126202 (in Chinese) [林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉 2015 物理学报 64 126202]

    [29]

    Compton O C, Cranford S W, Putz K W, An Z, Brinson L C, Buehler M J, Nguyen S T 2011 ACS Nano 6 2008

    [30]

    Sheng Y Z, Hua Y, Li J Y, Miao S 2013 Chem. Res. Chin. U. 29 788

    [31]

    Chen J, Zhao D, Jin X, Wang C, Wang D, Ge H 2014 Compos. Sci. Technol. 97 41

    [32]

    Huang T, Xin Y, Li T, Nutt S, Su C, Chen H, Liu P, Lai Z 2013 ACS Appl. Mater. Inter. 5 4878

    [33]

    Zhang C, Hao R, Liao H, Hou Y 2013 Nano Energy 2 88

    [34]

    Fu Y Z, Hu S Q, Lan Y H, Liu Y Q 2010 Acta Chim. Sin. 68 809 (in Chinese) [付一政, 胡双启, 兰艳花, 刘亚青 2010 化学学报 68 809]

    [35]

    Zhou G D, Duan L Y 2008 Basic of Structural Chemistry (4th Ed.) (Beijing: Peking University Press) p324 (in Chinese) [周公度, 段连运 2008 结构化学基础 (第4版) (北京: 北京大学出版社) 第324页]

    [36]

    Chen Z L 2007 Theory and Practice of Molecular Simulation (Beijing: Chemical Industry Press) p110 [陈正隆 2007分子模拟的理论与实践(北京: 化学工业出版社) 第110–112页]

    [37]

    Ding M X 2006 Polyimide: Chemistry, Relationship between Structure and Properties and Materials (Beijing: Science Press) pp225, 226 (in Chinese) [丁孟贤 2006 聚酰亚胺––化学、结构与性能的关系及材料(北京: 科学出版社)第225, 226页]

  • [1] 查俊伟, 王帆. 高导热聚酰亚胺电介质薄膜研究进展. 物理学报, 2022, 71(23): 233601. doi: 10.7498/aps.71.20221398
    [2] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响. 物理学报, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [3] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为. 物理学报, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [4] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [5] 黄多辉, 万明杰, 杨俊升. 聚甲基丙烯酸甲酯与碳纳米管纳米复合材料玻璃化转变及其非线性力学行为的分子动力学模拟. 物理学报, 2021, 70(21): 218101. doi: 10.7498/aps.70.20210752
    [6] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [7] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟. 物理学报, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [8] 王俊珺, 李涛, 李雄鹰, 李辉. 液态镓在石墨烯表面的润湿性及形貌特征. 物理学报, 2018, 67(14): 149601. doi: 10.7498/aps.67.20172717
    [9] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究. 物理学报, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [10] 董若宇, 曹鹏, 曹桂兴, 胡帼杰, 曹炳阳. 直流电场下水中石墨烯定向行为研究. 物理学报, 2017, 66(1): 014702. doi: 10.7498/aps.66.014702
    [11] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [12] 王松, 武占成, 唐小金, 孙永卫, 易忠. 聚酰亚胺电导率随温度和电场强度的变化规律. 物理学报, 2016, 65(2): 025201. doi: 10.7498/aps.65.025201
    [13] 覃业宏, 唐超, 张春小, 孟利军, 钟建新. 硅晶体表面石墨烯褶皱形貌的分子动力学模拟研究. 物理学报, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [14] 林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉. 聚酰亚胺/钽铌酸钾纳米颗粒复合材料结构与机械性能分子动力学模拟. 物理学报, 2015, 64(12): 126202. doi: 10.7498/aps.64.126202
    [15] 叶振强, 曹炳阳, 过增元. 石墨烯的声子热学性质研究. 物理学报, 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [16] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究. 物理学报, 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [17] 王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇. 不同温度条件下单层石墨烯纳米带弛豫性能的分子动力学研究. 物理学报, 2012, 61(20): 200207. doi: 10.7498/aps.61.200207
    [18] 刘晓旭, 殷景华, 程伟东, 卜文斌, 范勇, 吴忠华. 利用小角X射线散射技术研究组分对聚酰亚胺/Al2O3杂化薄膜界面特性与分形特征的影响. 物理学报, 2011, 60(5): 056101. doi: 10.7498/aps.60.056101
    [19] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟. 物理学报, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [20] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
计量
  • 文章访问数:  7722
  • PDF下载量:  383
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-20
  • 修回日期:  2017-08-20
  • 刊出日期:  2017-11-05

/

返回文章
返回