搜索

x
中国物理学会期刊

基于石墨烯电极的齐聚苯乙炔分子器件的整流特性

CSTR: 32037.14.aps.67.20180088

Rectifying performances of oligo phenylene ethynylene molecular devices based on graphene electrodes

CSTR: 32037.14.aps.67.20180088
PDF
导出引用
  • 以齐聚苯乙炔分子为研究对象,采用密度泛函理论与非平衡格林函数相结合的第一性原理方法,对基于石墨烯电极的齐聚苯乙炔分子器件整流特性进行了研究,系统地分析了官能团对分子器件整流特性的影响.通过研究发现,官能团对齐聚苯乙炔分子器件整流特性影响显著,当添加失电子官能团氨基(NH2)时出现正向整流,添加得电子官能团硝基(NO2)时出现反向整流,当同时添加氨基和硝基官能团时,会出现正反向整流交替现象,研究结果表明通过添加不同类型的官能团能有效控制分子整流器的整流特性.

     

    With the experimental advances in microscale fabrication technology, the designing of functional devices by using single molecules has become one of the most promising methods for the next generation of electronic devices. Molecular rectifier, as a basic component almost for any electronic device, has become a research hotspot in molecular electronics. Recently, one-dimensional graphene nanoribbons (GNRs) which cut off from the novel two-dimensional material-graphene were used as the electrodes for several molecular devices due to their unique electronic structures and transport characteristics. The GNRs have less serious contact problems than metallic electrode materials like gold. In this paper, we investigate the rectifying performances of oligo phenylene ethynylene molecular devices based on graphene electrodes by using the density-functional theory and the non-equilibrium Green's function method. The effect of functional group on the rectifying performances of molecular device is discussed. The results show that the functional group plays a significant role in determining the rectifying performances of oligo phenylene ethynylene molecular device. The rectifying ratio can be effectively tuned by the functional group: adding the donor group (NH2) can lead to the positive rectifying phenomenon, adding the acceptor group (NO2) can trigger the negative rectifying phenomenon, and simultaneously adding NH2 and NO2 groups can bring about an alternate phenomenon between positive and reverse rectifying . The physical mechanism of the rectifying behavior is explained based on the transmission spectra and molecular projected self-consistent Hamiltonian. The transmission spectra of four models (M1-M4) bias voltages in range from-1.0 V to 1.0 V are given. The main transmission peak of M1 for positive bias is similar to that for negative bias, resulting in a weak rectification ratio. However, for M2 and M3, the main transmission peaks for positive and negative bias are significantly different from each other, which shows obviously a rectifying behavior. For M4, the main transmission peak is higher for the bias of (0.44-0.83 V) and also for the bias (0.95-1.00 V), showing an alternate phenomenon between positive and reverse rectifying. The maximum rectification ratio reaches 2.71 by adding an acceptor group (NO2), which suggests that this system has attractive potential applications in future molecular circuit.

     

    目录

    /

    返回文章
    返回