搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯编码超构材料的太赫兹波束多功能动态调控

闫昕 梁兰菊 张璋 杨茂生 韦德泉 王猛 李院平 吕依颖 张兴坊 丁欣 姚建铨

基于石墨烯编码超构材料的太赫兹波束多功能动态调控

闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨
PDF
导出引用
导出核心图
  • 提出了一种基于石墨烯带的太赫兹波段的1 bit编码超构材料,可以实现太赫兹波束的数目、频率、幅度等参数多功能动态调控.该结构由金属薄膜、聚酰亚胺、硅、二氧化硅、石墨烯带组成.通过对石墨烯带施加两种不同的电压,可以实现一定频率范围内相位差接近180°的“0”和“1”数字编码单元,进而构成1 bit动态可控的编码超构材料.全波仿真结果表明,不同序列的编码超构材料能够实现波束数目从单波束、双波束、多波束到宽波束的调控.相同序列的编码超构材料,通过施加石墨烯带的不同电压能够实现宽频段波束频率的偏移.对于000000或者111111周期序列的编码超构材料,通过施加石墨烯带的不同电压还能够实现波束幅度的调控.因此这种基于石墨烯带的编码超构材料为灵活调控太赫兹波提供了一种新的途径,将在雷达隐身、成像、宽带通信等方面具有重要的意义.
      通信作者: 梁兰菊, lianglanju123@163.com
    • 基金项目: 国家自然科学基金(批准号:61701434,61735010)、山东省自然基金(批准号:ZR2017MF005)、山东省高等学校科技计划(批准号:J17KA087)、中国博士后科学基金(批准号:2015M571263)、枣庄市自主创新及成果转化专项(批准号:2016GH19,2016GH31)、枣庄市光电信息功能材料与微纳器件重点实验室和枣庄市太赫兹工程技术研究中心资助的课题.
    [1]

    Tonouchi M 2007 Nat. Photon. 1 97

    [2]

    Pawar A Y, Sonawane D D, Erande K B, Derle D V 2013 Drug Invent. Today 5 157

    [3]

    Nagatsuma T, Ducournau G, Renaud C C 2016 Nat. Photon. 10 371

    [4]

    Alves F, Grbovic D, Kearney B, Karunasiri G 2012 Opt. Lett. 37 1886

    [5]

    Benz A, Rall M, Schwarz S, Dietze D, Detz H, Andrews A M, Schrenk W 2014 Sci. Rep. 4 4269

    [6]

    Chen S, Hu W D 2017 Radio Commun. Technol. 43 01(in Chinese) [陈实, 胡伟东 2017 无线电通信技术 43 01]

    [7]

    Shen H P, Koschny T T, Soukoulis C M 2014 Phys. Rev. B 90 115437

    [8]

    Dabidian N, Gupta S D, Kholmanov I, Lai K, Lu F, Lee J W, Jin M Z, Trendafilov S, Khanikaev A, Fallahazad B, Tutuc E, Belkin M A, Gennady S 2016 Nano Lett. 16 3607

    [9]

    Zheludev N I 2010 Science 328 582

    [10]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426

    [11]

    Han J F, Cao X Y, Gao J, Li S J, Zhang C 2016 Acta Phys. Sin. 65 044201(in Chinese) [韩江枫, 曹祥玉, 高军, 李思佳, 张晨 2016 物理学报 65 044201]

    [12]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [13]

    Jia S L, Wan X, Su P, Zhao Y J, Cui T J 2016 AIP Advan. 6 045024

    [14]

    Zhang Y, Feng Y J, Jiang T, Cao J, Zhao J M, Zhu B 2017 Acta Phys. Sin. 66 204101(in Chinese) [张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博 2017 物理学报 66 204101]

    [15]

    Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X B, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936

    [16]

    Shen N H, Koschny T, Soukoulis C M, Tassin P 2014 Phys. Rev. B 90 115437

    [17]

    Dabidian N, Dutta-Gupta S, Kholmanov I, Lai K, Lu F, Jongwon L, Jin M Z, Trendafilov S, Khanikaev A, Fallahazad B, Tutuc E, Shvets G 2016 Nano Lett. 16 3607

    [18]

    Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Debdeep J, Liu L, Xing H G 2012 Nat. Commun. 3 780

    [19]

    Gao H, Yan F P, Tian S Y, Bai Y 2017 Chinese J. Lasers 44 0703024(in Chinese) [高红, 延凤平, 谭思宇, 白燕 2017 中国激光 44 0703024]

    [20]

    Sherrott M C, Hon P W C, Fountaine K T, Garcia J C, Ponti S M, Brar V W, Sweatlock L A, Atwater H A 2017 Nano Lett. 17 3027

    [21]

    Carrasco E, Tamagnone M, Perruisseau-Carrier J 2013 Appl. Phys. Lett. 102 104103

    [22]

    Zhang Y, Feng Y J, Zhu B, Zhao J M, Jiang T 2016 Opt. Express 23 27230

    [23]

    Orazbayev B, Beruete M, Khromova I 2016 Opt. Express 24 8848

    [24]

    Su Z X, Chen X, Yin J B, Zhao X P 2016 Opt. Lett. 16 3799

    [25]

    Della G C, Engheta N 2014 Nat. Mater. 13 1115

    [26]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light: Sci. Appl. 3 e218

    [27]

    Liu S, Zhang L, Yang Q L, Xu Q, Yang Y, Noor A, Zhang Q, Shahid I, Wan X, Tian Z, Tang W X, Cheng Q, Han J G, Zhang W L 2016 Adv. Opt. Mater. 4 1965

    [28]

    Liu S, Cui T J, Zhang L, Xu Q, Wang Q, Wan X, Gu J Q, Tang W X, Qi M Q, Han J G, Zhang W L, Zhou X Y, Cheng Q 2016 Adv. Sci. 3 1600156

    [29]

    Cui T J 2017 J. Opt. 19 084004

    [30]

    Zhang L 2017 J. Mater. Chem. C 5 3644

    [31]

    Liu S, Cui T J 2017 Adv. Opt. Mater. 5 1700624

    [32]

    Liang L J, Qi M Q, Yang J, Shen X P, Zhai J Q, Xu W Z, Jin B B, Liu W W, Feng Y J, Zhang C H, Lu H, Chen H T, Kang L, Xu W W, Chen J, Cui T J, Wu P H, Liu S G 2015 Adv. Opt. Mater. 3 1374

    [33]

    Yan X, Liang L J, Liu W W, Ding X, Yang J, Xu D G, Zhang Y T, Cui T J, Yao J Q 2015 Opt. Express 23 29128

    [34]

    Yan X, Liang L J, Zhang Y T, Ding X, Yao J Q 2015 Acta Phys. Sin. 64 158101(in Chinese) [闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨 2015 物理学报 64 158101]

    [35]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [36]

    Gómez-Díaz J S, Perruisseau-Carrier J 2013 Opt. Express 21 15490

  • [1]

    Tonouchi M 2007 Nat. Photon. 1 97

    [2]

    Pawar A Y, Sonawane D D, Erande K B, Derle D V 2013 Drug Invent. Today 5 157

    [3]

    Nagatsuma T, Ducournau G, Renaud C C 2016 Nat. Photon. 10 371

    [4]

    Alves F, Grbovic D, Kearney B, Karunasiri G 2012 Opt. Lett. 37 1886

    [5]

    Benz A, Rall M, Schwarz S, Dietze D, Detz H, Andrews A M, Schrenk W 2014 Sci. Rep. 4 4269

    [6]

    Chen S, Hu W D 2017 Radio Commun. Technol. 43 01(in Chinese) [陈实, 胡伟东 2017 无线电通信技术 43 01]

    [7]

    Shen H P, Koschny T T, Soukoulis C M 2014 Phys. Rev. B 90 115437

    [8]

    Dabidian N, Gupta S D, Kholmanov I, Lai K, Lu F, Lee J W, Jin M Z, Trendafilov S, Khanikaev A, Fallahazad B, Tutuc E, Belkin M A, Gennady S 2016 Nano Lett. 16 3607

    [9]

    Zheludev N I 2010 Science 328 582

    [10]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426

    [11]

    Han J F, Cao X Y, Gao J, Li S J, Zhang C 2016 Acta Phys. Sin. 65 044201(in Chinese) [韩江枫, 曹祥玉, 高军, 李思佳, 张晨 2016 物理学报 65 044201]

    [12]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [13]

    Jia S L, Wan X, Su P, Zhao Y J, Cui T J 2016 AIP Advan. 6 045024

    [14]

    Zhang Y, Feng Y J, Jiang T, Cao J, Zhao J M, Zhu B 2017 Acta Phys. Sin. 66 204101(in Chinese) [张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博 2017 物理学报 66 204101]

    [15]

    Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X B, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936

    [16]

    Shen N H, Koschny T, Soukoulis C M, Tassin P 2014 Phys. Rev. B 90 115437

    [17]

    Dabidian N, Dutta-Gupta S, Kholmanov I, Lai K, Lu F, Jongwon L, Jin M Z, Trendafilov S, Khanikaev A, Fallahazad B, Tutuc E, Shvets G 2016 Nano Lett. 16 3607

    [18]

    Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Debdeep J, Liu L, Xing H G 2012 Nat. Commun. 3 780

    [19]

    Gao H, Yan F P, Tian S Y, Bai Y 2017 Chinese J. Lasers 44 0703024(in Chinese) [高红, 延凤平, 谭思宇, 白燕 2017 中国激光 44 0703024]

    [20]

    Sherrott M C, Hon P W C, Fountaine K T, Garcia J C, Ponti S M, Brar V W, Sweatlock L A, Atwater H A 2017 Nano Lett. 17 3027

    [21]

    Carrasco E, Tamagnone M, Perruisseau-Carrier J 2013 Appl. Phys. Lett. 102 104103

    [22]

    Zhang Y, Feng Y J, Zhu B, Zhao J M, Jiang T 2016 Opt. Express 23 27230

    [23]

    Orazbayev B, Beruete M, Khromova I 2016 Opt. Express 24 8848

    [24]

    Su Z X, Chen X, Yin J B, Zhao X P 2016 Opt. Lett. 16 3799

    [25]

    Della G C, Engheta N 2014 Nat. Mater. 13 1115

    [26]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light: Sci. Appl. 3 e218

    [27]

    Liu S, Zhang L, Yang Q L, Xu Q, Yang Y, Noor A, Zhang Q, Shahid I, Wan X, Tian Z, Tang W X, Cheng Q, Han J G, Zhang W L 2016 Adv. Opt. Mater. 4 1965

    [28]

    Liu S, Cui T J, Zhang L, Xu Q, Wang Q, Wan X, Gu J Q, Tang W X, Qi M Q, Han J G, Zhang W L, Zhou X Y, Cheng Q 2016 Adv. Sci. 3 1600156

    [29]

    Cui T J 2017 J. Opt. 19 084004

    [30]

    Zhang L 2017 J. Mater. Chem. C 5 3644

    [31]

    Liu S, Cui T J 2017 Adv. Opt. Mater. 5 1700624

    [32]

    Liang L J, Qi M Q, Yang J, Shen X P, Zhai J Q, Xu W Z, Jin B B, Liu W W, Feng Y J, Zhang C H, Lu H, Chen H T, Kang L, Xu W W, Chen J, Cui T J, Wu P H, Liu S G 2015 Adv. Opt. Mater. 3 1374

    [33]

    Yan X, Liang L J, Liu W W, Ding X, Yang J, Xu D G, Zhang Y T, Cui T J, Yao J Q 2015 Opt. Express 23 29128

    [34]

    Yan X, Liang L J, Zhang Y T, Ding X, Yao J Q 2015 Acta Phys. Sin. 64 158101(in Chinese) [闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨 2015 物理学报 64 158101]

    [35]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [36]

    Gómez-Díaz J S, Perruisseau-Carrier J 2013 Opt. Express 21 15490

  • [1] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元的厚度渐变镀银条带探针实现太赫兹波的紧聚焦和场增强. 物理学报, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [2] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理第一原理. 物理学报, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [3] 白家豪, 郭建刚. 石墨烯/柔性基底复合结构双向界面切应力传递问题的理论研究. 物理学报, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [4] 张松然, 何代华, 涂华垚, 孙艳, 康亭亭, 戴宁, 褚君浩, 俞国林. HgCdTe薄膜的输运特性及其应力调控. 物理学报, 2020, 69(5): 057301. doi: 10.7498/aps.69.20191330
    [5] 吴雨明, 丁霄, 王任, 王秉中. 基于等效介质原理的宽角超材料吸波体的理论分析. 物理学报, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [6] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191989
    [7] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200026
    [8] 罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿. 超紧凑型飞秒电子衍射仪的设计. 物理学报, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [9] 庄志本, 李军, 刘静漪, 陈世强. 基于新的五维多环多翼超混沌系统的图像加密算法. 物理学报, 2020, 69(4): 040502. doi: 10.7498/aps.69.20191342
    [10] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
  • 引用本文:
    Citation:
计量
  • 文章访问数:  438
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-17
  • 修回日期:  2018-03-28
  • 刊出日期:  2018-06-05

基于石墨烯编码超构材料的太赫兹波束多功能动态调控

  • 1. 枣庄学院光电工程学院, 枣庄 277160;
  • 2. 天津大学精密仪器与光电子工程学院, 天津 300072;
  • 3. 山东省光电信息处理与显示实验室, 枣庄 277160
  • 通信作者: 梁兰菊, lianglanju123@163.com
    基金项目: 

    国家自然科学基金(批准号:61701434,61735010)、山东省自然基金(批准号:ZR2017MF005)、山东省高等学校科技计划(批准号:J17KA087)、中国博士后科学基金(批准号:2015M571263)、枣庄市自主创新及成果转化专项(批准号:2016GH19,2016GH31)、枣庄市光电信息功能材料与微纳器件重点实验室和枣庄市太赫兹工程技术研究中心资助的课题.

摘要: 提出了一种基于石墨烯带的太赫兹波段的1 bit编码超构材料,可以实现太赫兹波束的数目、频率、幅度等参数多功能动态调控.该结构由金属薄膜、聚酰亚胺、硅、二氧化硅、石墨烯带组成.通过对石墨烯带施加两种不同的电压,可以实现一定频率范围内相位差接近180°的“0”和“1”数字编码单元,进而构成1 bit动态可控的编码超构材料.全波仿真结果表明,不同序列的编码超构材料能够实现波束数目从单波束、双波束、多波束到宽波束的调控.相同序列的编码超构材料,通过施加石墨烯带的不同电压能够实现宽频段波束频率的偏移.对于000000或者111111周期序列的编码超构材料,通过施加石墨烯带的不同电压还能够实现波束幅度的调控.因此这种基于石墨烯带的编码超构材料为灵活调控太赫兹波提供了一种新的途径,将在雷达隐身、成像、宽带通信等方面具有重要的意义.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回