搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(Cu,N)共掺杂TiO2/MoS2异质结的电子和光学性能:杂化泛函HSE06

王冠仕 林彦明 赵亚丽 姜振益 张晓东

(Cu,N)共掺杂TiO2/MoS2异质结的电子和光学性能:杂化泛函HSE06

王冠仕, 林彦明, 赵亚丽, 姜振益, 张晓东
PDF
导出引用
导出核心图
  • 在密度泛函理论的基础上,系统地研究了Cu/N(共)掺杂的TiO2/MoS2异质结体系的几何结构、电子结构和光学性质.计算发现,TiO2/MoS2异质结的带隙相比于纯的TiO2(101)表面明显变小,Cu/N(共)掺杂TiO2/MoS2异质结体系的禁带宽度也明显地减小,这导致光子激发能量的降低和光吸收能力的提高.通过计算Cu/N(共)掺杂TiO2/MoS2的差分电荷密度,发现光生电子与空穴积累在掺杂后的TiO2(101)表面和单层MoS2之间,这表明掺杂杂质体系可以有效地抑制光生电子-空穴对的复合.此外,我们计算了在不同压力下TiO2/MoS2异质结的几何、电子和光学性质,发现适当增加压力可以有效提高异质结的光吸收性能.本文结果表明,Cu/N(共)掺杂TiO2/MoS2异质结和对TiO2/MoS2异质结加压都能有效地提高材料的光学性能.
    • 基金项目: 国家自然科学基金(批准号:11447030,51572219)、陕西省自然科学基金(批准号:2016JQ1038,2015JM1018)、西北大学科学基金(批准号:14NW23)和西北大学双级一流大学建设项目资助的课题.
    [1]

    Kwon W W, Han H, Kim J H 2017 Energy 103 226

    [2]

    Rahmouni S, Negrou B, Settou N, Dominguez J, Gouareh A 2017 Energy 42 1383

    [3]

    Lewis N S, Nocera D G 2006 Science 103 15729

    [4]

    Fujishima A, Honda K 1972 Nature 238 37

    [5]

    Ishikawa A, Takata T, Kondo J N, Hara M, Kobayashi H, Domen K 2002 J. Am. Chem. Soc. 124 13547

    [6]

    Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K 2005 J. Am. Chem. Soc. 127 8286

    [7]

    Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K 2006 Nature 440 295

    [8]

    Lee Y, Terashima H, Shimodaira Y, Teramura K, Hara M, Kobayashi H, Domen K, Yashima M 2007 J. Phys. Chem. C 111 1042

    [9]

    Chen X, Mao S S 2007 Chem. Rev. 107 289

    [10]

    Khan S U M, Al-Shahry M, Ingler Jr W B 2002 Science 297 2243

    [11]

    Yin S, Zhang Q, Saito F, Sato T 2003 Chem. Lett. 32 358

    [12]

    Ohtani B, Handa J I, Nishimoto S I, Kagiya T 1985 Chem. Phys. Lett. 120 292

    [13]

    Elsellami L, Dappozze F, Fessi N, Houas A, Guillard C 2018 Process. Saf. Environ. 113 109

    [14]

    Jung H S, Kim H 2009 Electron. Mater. Lett. 5 73

    [15]

    Tehare K K, Bhande S S, Mutkule S U, Stadler F J, Ao J P, Mane R S, Liu X 2017 J. Alloys Compd. 704 187

    [16]

    Meng A, Zhang J, Xu D, Cheng B, Yu J 2016 Appl. Catal. B 198 286

    [17]

    Cheng X, Yu X, Xing Z, Yang L 2016 Arab. J. Chem. 9 1706

    [18]

    Wang W K, Chen J J, Gao M, Huang Y X, Zhang X, Yu H Q 2016 Appl. Catal. B: Environ. 195 69

    [19]

    Xu C, Zhang Y, Chen J, Lin J, Zhang X, Wang Z, Zhou J 2017 Appl. Catal. B: Environ. 204 324

    [20]

    Zhang W, Yin J, Tang X, Zhang P, Ding Y 2017 Physica 85 259

    [21]

    Brindha A, Sivakumar T 2017 J. Photoch. Photobio. A: Chem. 340 14

    [22]

    Ren D, Li H, Cheng X 2015 Solid. State. Commun. 223 54

    [23]

    Kalantari K, Kalbasi M, Sohrabi M, Royaee S J 2017 Ceram. Int. 43 973

    [24]

    Yan J, Wu H, Chen H, Zhang Y, Zhang F, Liu S F 2016 Appl. Catal. B: Environ. 191 130

    [25]

    Jaiswal R, Bharambe J, Patel N, Dashora A, Kothari D C, Miotello A 2015 Appl. Catal. B: Environ. 168 333

    [26]

    Sun L, Xian Z, Cheng X 2012 Langmuir 28 5882

    [27]

    Yang C T, Balakrishnan N, Bhethanabotla V R 2017 J. Phys. Chem. C 118 4702

    [28]

    He H, Lin J, Fu W, Wang X, Wang H 2016 Adv. Energy Mater. 6 1600464

    [29]

    Tao J G, Chai J W, Guan L X, Pan J S, Wang S J 2015 Appl. Phys. Lett. 106 081602

    [30]

    Zhang J, Huang L, Lu Z, Jin Z, Wang X 2016 J. Alloys Compd. 688 840

    [31]

    Yang X, Huang H, Jin B, Luo J, Zhou X 2016 RSC. Adv. 6 107075

    [32]

    Yuan Y J, Ye Z J, Lu H, Hu B, Li Y H, Chen D, Zhong J S, Yu Z T, Zou Z 2016 ACS Catal. 6 532

    [33]

    Liu X, Xing Z, Zhang Y, Li Z, Wu X, Tan S, Yu X, Zhu Q, Zhou W 2017 Appl. Catal. B: Environ. 201 119

    [34]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [35]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [36]

    Zhao S, Xue J, Kang W 2014 J. Chem. Phys. Lett. 595 35

    [37]

    Zhang J J, Gao B, Dong S 2016 Phys. Rev. B 93 155430

    [38]

    Shirley R, Kraft M, Inderwildi O R 2010 Phys. Rev. B 81 075111

    [39]

    Zhang J F, Zhou P, Liu J J, Yu J G 2014 Chem. Chem. Phys. 16 20382

    [40]

    Ataca C, Sahin H 2012 J. Phys. Chem. C 116 8983

    [41]

    Burdett J K, Hughbanks T, Miller G J, Richardson J W, Smith J V 1987 J. Am. Chem. Soc. 109 3639

    [42]

    Tahir M, Tahir B 2016 Appl. Surf. Sci. 377 244

  • [1]

    Kwon W W, Han H, Kim J H 2017 Energy 103 226

    [2]

    Rahmouni S, Negrou B, Settou N, Dominguez J, Gouareh A 2017 Energy 42 1383

    [3]

    Lewis N S, Nocera D G 2006 Science 103 15729

    [4]

    Fujishima A, Honda K 1972 Nature 238 37

    [5]

    Ishikawa A, Takata T, Kondo J N, Hara M, Kobayashi H, Domen K 2002 J. Am. Chem. Soc. 124 13547

    [6]

    Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K 2005 J. Am. Chem. Soc. 127 8286

    [7]

    Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K 2006 Nature 440 295

    [8]

    Lee Y, Terashima H, Shimodaira Y, Teramura K, Hara M, Kobayashi H, Domen K, Yashima M 2007 J. Phys. Chem. C 111 1042

    [9]

    Chen X, Mao S S 2007 Chem. Rev. 107 289

    [10]

    Khan S U M, Al-Shahry M, Ingler Jr W B 2002 Science 297 2243

    [11]

    Yin S, Zhang Q, Saito F, Sato T 2003 Chem. Lett. 32 358

    [12]

    Ohtani B, Handa J I, Nishimoto S I, Kagiya T 1985 Chem. Phys. Lett. 120 292

    [13]

    Elsellami L, Dappozze F, Fessi N, Houas A, Guillard C 2018 Process. Saf. Environ. 113 109

    [14]

    Jung H S, Kim H 2009 Electron. Mater. Lett. 5 73

    [15]

    Tehare K K, Bhande S S, Mutkule S U, Stadler F J, Ao J P, Mane R S, Liu X 2017 J. Alloys Compd. 704 187

    [16]

    Meng A, Zhang J, Xu D, Cheng B, Yu J 2016 Appl. Catal. B 198 286

    [17]

    Cheng X, Yu X, Xing Z, Yang L 2016 Arab. J. Chem. 9 1706

    [18]

    Wang W K, Chen J J, Gao M, Huang Y X, Zhang X, Yu H Q 2016 Appl. Catal. B: Environ. 195 69

    [19]

    Xu C, Zhang Y, Chen J, Lin J, Zhang X, Wang Z, Zhou J 2017 Appl. Catal. B: Environ. 204 324

    [20]

    Zhang W, Yin J, Tang X, Zhang P, Ding Y 2017 Physica 85 259

    [21]

    Brindha A, Sivakumar T 2017 J. Photoch. Photobio. A: Chem. 340 14

    [22]

    Ren D, Li H, Cheng X 2015 Solid. State. Commun. 223 54

    [23]

    Kalantari K, Kalbasi M, Sohrabi M, Royaee S J 2017 Ceram. Int. 43 973

    [24]

    Yan J, Wu H, Chen H, Zhang Y, Zhang F, Liu S F 2016 Appl. Catal. B: Environ. 191 130

    [25]

    Jaiswal R, Bharambe J, Patel N, Dashora A, Kothari D C, Miotello A 2015 Appl. Catal. B: Environ. 168 333

    [26]

    Sun L, Xian Z, Cheng X 2012 Langmuir 28 5882

    [27]

    Yang C T, Balakrishnan N, Bhethanabotla V R 2017 J. Phys. Chem. C 118 4702

    [28]

    He H, Lin J, Fu W, Wang X, Wang H 2016 Adv. Energy Mater. 6 1600464

    [29]

    Tao J G, Chai J W, Guan L X, Pan J S, Wang S J 2015 Appl. Phys. Lett. 106 081602

    [30]

    Zhang J, Huang L, Lu Z, Jin Z, Wang X 2016 J. Alloys Compd. 688 840

    [31]

    Yang X, Huang H, Jin B, Luo J, Zhou X 2016 RSC. Adv. 6 107075

    [32]

    Yuan Y J, Ye Z J, Lu H, Hu B, Li Y H, Chen D, Zhong J S, Yu Z T, Zou Z 2016 ACS Catal. 6 532

    [33]

    Liu X, Xing Z, Zhang Y, Li Z, Wu X, Tan S, Yu X, Zhu Q, Zhou W 2017 Appl. Catal. B: Environ. 201 119

    [34]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [35]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [36]

    Zhao S, Xue J, Kang W 2014 J. Chem. Phys. Lett. 595 35

    [37]

    Zhang J J, Gao B, Dong S 2016 Phys. Rev. B 93 155430

    [38]

    Shirley R, Kraft M, Inderwildi O R 2010 Phys. Rev. B 81 075111

    [39]

    Zhang J F, Zhou P, Liu J J, Yu J G 2014 Chem. Chem. Phys. 16 20382

    [40]

    Ataca C, Sahin H 2012 J. Phys. Chem. C 116 8983

    [41]

    Burdett J K, Hughbanks T, Miller G J, Richardson J W, Smith J V 1987 J. Am. Chem. Soc. 109 3639

    [42]

    Tahir M, Tahir B 2016 Appl. Surf. Sci. 377 244

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1607
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-12
  • 修回日期:  2018-09-29
  • 刊出日期:  2018-12-05

(Cu,N)共掺杂TiO2/MoS2异质结的电子和光学性能:杂化泛函HSE06

  • 西北大学现代物理研究所, 陕西省理论物理前沿重点实验室, 西安 710069
    基金项目: 

    国家自然科学基金(批准号:11447030,51572219)、陕西省自然科学基金(批准号:2016JQ1038,2015JM1018)、西北大学科学基金(批准号:14NW23)和西北大学双级一流大学建设项目资助的课题.

摘要: 在密度泛函理论的基础上,系统地研究了Cu/N(共)掺杂的TiO2/MoS2异质结体系的几何结构、电子结构和光学性质.计算发现,TiO2/MoS2异质结的带隙相比于纯的TiO2(101)表面明显变小,Cu/N(共)掺杂TiO2/MoS2异质结体系的禁带宽度也明显地减小,这导致光子激发能量的降低和光吸收能力的提高.通过计算Cu/N(共)掺杂TiO2/MoS2的差分电荷密度,发现光生电子与空穴积累在掺杂后的TiO2(101)表面和单层MoS2之间,这表明掺杂杂质体系可以有效地抑制光生电子-空穴对的复合.此外,我们计算了在不同压力下TiO2/MoS2异质结的几何、电子和光学性质,发现适当增加压力可以有效提高异质结的光吸收性能.本文结果表明,Cu/N(共)掺杂TiO2/MoS2异质结和对TiO2/MoS2异质结加压都能有效地提高材料的光学性能.

English Abstract

参考文献 (42)

目录

    /

    返回文章
    返回