搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国产部分掺杂光纤实现3 kW全光纤激光振荡输出

张志伦 张芳芳 林贤峰 王世杰 曹驰 邢颍滨 廖雷 李进延

引用本文:
Citation:

国产部分掺杂光纤实现3 kW全光纤激光振荡输出

张志伦, 张芳芳, 林贤峰, 王世杰, 曹驰, 邢颍滨, 廖雷, 李进延

Home-made confined-doped fiber with 3-kW all-fiber laser oscillating output

Zhang Zhi-Lun, Zhang Fang-Fang, Lin Xian-Feng, Wang Shi-Jie, Cao Chi, Xing Ying-Bin, Liao Lei, Li Jin-Yan
PDF
HTML
导出引用
  • 模式不稳定效应和非线性效应成为光纤激光器输出功率和光束质量进一步提升的主要限制因素. 采用改进的化学气相沉积工艺结合溶液掺杂技术制备33/400 μm部分掺杂掺镱双包层光纤, 镱离子掺杂直径比为70%, 折射率剖面近似阶跃型. 利用主振荡功率放大系统验证部分掺杂光纤光束质量优化作用, 种子光束质量为1.53, 随着泵浦功率增长, 输出激光光束质量逐渐优化至1.43. 搭建915 nm反向泵浦全光纤结构激光振荡器. 实验中, 在泵浦光功率约为4.99 kW时, 获得3.14 kW中心波长为1081 nm的激光输出, 3 dB带宽为3.2 nm, 且未出现模式不稳定和受激拉曼散射现象, 这是目前基于国产部分掺杂光纤实现的最高输出功率. 以上结果表明, 部分掺杂光纤在实现高功率且高光束质量光纤激光输出中具有潜力.
    Ytterbium doped fiber lasers (YDFLs) with small volume, good beam quality, good heat dissipation performance and high conversion efficiency are widely used in industrial processing, military, medical and other fields. In past decades, with the development of high-performance double cladding gain fiber and fiber devices, the output power of YDFLs increases rapidly. However, nonlinear effects (NLEs), such as stimulated Brillouin scattering (SBS), stimulated Raman scattering (SRS), are produced, which limits the further enhancement of the output power of fiber laser. Large mode area ytterbium-doped fiber (LMAYDF) can effectively increase the nonlinear effect threshold. However, increasing the core diameter will support more high-order modes (HOMs), which may lead the beam quality to deteriorate and induce the mode instability (MI) effect to occur in fiber lasers. Thus, MI and NLEs have become the main limiting factors for the further improving of output power and beam quality in fiber lasers. The confined-doped ytterbium-doped double-clad fiber (CDYDF), by reducing the doping diameter of gain ions in the fiber core, makes the fundamental mode (FM) dominate in mode competition and HOM suppressed to achieve LMAYDF gain control for different modes, thus improving the output power of the fiber laser and maintaining good beam quality. The 33/400 μm confined-doped ytterbium-doped double-clad fiber (CDYDF) is fabricated by modifying the chemical vapor deposition (MCVD) process with solution doping technology (SDT). The Yb3+ doping diameter ratio is 70% and refractive index profile is close to step-index. Utilizing the master oscillator power amplifier (MOPA) system the beam quality optimization effect of confined-doped fiber is verified and optimized to 1.43 as the power increases while the M2 of seed laser is 1.53. An all-fiber structure counter-pumped fiber oscillator is constructed to test the laser performance of home-made confined-doped fiber. When the pump power is ~4.99 kW, laser power of 3.14 kW with a central wavelength of 1081 nm and line width of 3.2 nm at 3 dB is obtained. Moreover, there is no MI nor SRS in the whole experiment. We demonstrate that it is the highest output power based on home-made confined-doped fiber. The above results indicate that confined-doped fibers have the potential to achieve high-power and high-beam-quality fiber laser output.
      通信作者: 李进延, ljy@hust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61735007, 61975061)资助的课题
      Corresponding author: Li Jin-Yan, ljy@hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61735007, 61975061)
    [1]

    Jauregui C, Jens L, Andreas T 2013 Nat. Photonics 7 861Google Scholar

    [2]

    Zervas M N, Codemard C A 2014 IEEE J. Sel. Top. Quantum Electron. 20 219Google Scholar

    [3]

    蒙红云, 廖键宏, 刘颂豪 2004 激光与光电子学进展 41 55

    Meng H Y, Liao J H, Liu S H 2004 Las. Optoelect. Prog. 41 55

    [4]

    楼祺洪, 朱健强, 周军, 朱晓峥, 王之江 2003 装备指挥技术学院学报 5 28

    Lou Q H, Zhu J Q, Zhou J, Zhu X Z, Wang Z J 2003 J. Equip. Acad. 5 28

    [5]

    李磐, 师红星, 符聪, 薛亚飞, 邹岩 2018 激光与光电子学进展 55 121406Google Scholar

    Li P, Shi H X, Fu C, Xue Y F, Zou Y 2018 Las. Optoelect. Prog. 55 121406Google Scholar

    [6]

    王雪娇, 肖起榕, 闫平, 陈霄, 李丹 2015 物理学报 64 164204Google Scholar

    Wang X J, Xiao Q R, Yan P, Chen X, Li D 2015 Acta Phys. Sin. 64 164204Google Scholar

    [7]

    王泽晖, 肖起榕, 王雪娇, 衣永青, 庞璐 2018 物理学报 67 024205Google Scholar

    Wang Z H, Xiao Q R, Wang X J, Yi Y Q, Pang L 2018 Acta Phys. Sin. 67 024205Google Scholar

    [8]

    张汉伟, 杨保来, 王小林, 史尘, 叶青 2018 中国激光 45 0415002

    Zhang H W, Yang B L, Wang X L, Shi C, Ye Q 2018 Chin. J. Las. 45 0415002

    [9]

    杨保来, 王小林, 叶云, 曾令筏, 张汉伟 2020 中国激光 47 0116001Google Scholar

    Yang B L, Wang X L, Ye Y, Zeng L F, Zhang H W 2020 Chin. J. Las. 47 0116001Google Scholar

    [10]

    Richardson D J, Nilsson J, Clarkson W 2010 J. Opt. Soc. Am. B 27 B63Google Scholar

    [11]

    Smith A V, Jesse J S 2011 Opt. Express 19 10180Google Scholar

    [12]

    Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F 2011 Opt. Express 19 13218Google Scholar

    [13]

    Ward B, Robin C, Dajani I 2012 Opt. Express 20 11407Google Scholar

    [14]

    Dong L 2013 Opt. Express 21 2642Google Scholar

    [15]

    Hansen K R, Alkeskjold T T, Broeng J 2013 Opt. Lett. 37 2382

    [16]

    Naderi S, Dajani I, Madden T 2013 Opt. Express 21 16111Google Scholar

    [17]

    Ye C, Koponen J, Kokki T, Kokki T, Ponsoda J M, Tervonen A, Honkanen S 2012 Proc. SPIE 8237, Fiber Lasers IX: Technology, Systems and Applications San Francisco, California, United State, February 2−15, 2012 p823737

    [18]

    Liao L, Zhang F, He X, Chen Y, Wang Y 2018 Appl. Opt. 57 3244Google Scholar

    [19]

    Mashiko Y, Nguyen H K, Kashiwagi M, Kitabayashi T, Shima K, Tanaka D 2016 Proc. SPIE 9728, Fiber Lasers XIII: Technology, Systems and Applications San Francisco, California, United State, March 3−9, 2016 p972805

    [20]

    Shima K, Ikoma S, Uchiyama K, Takubo Y, Kashiwagi M, Tanaka D 2018 Proc. SPIE 10512, Fiber Lasers XV: Technology and Systems San Francisco, California, United State, February 2−26, 2018 p10512C

    [21]

    Wang Y, Kitahara R, Kiyoyama W, Shirakura Y, Kurihara T, Nakanish Y 2020 Proc. SPIE 11260, Fiber Lasers XVII: Technology and Systems San Francisco, California, United State, February 2−21, 2020 p1126022

    [22]

    Liu Y, Zhang F, Zhao N, Lin X, Liao L 2018 Opt. Express 26 3421Google Scholar

    [23]

    Zhang F, Wang Y, Lin X, Cheng Y, Zhang Z 2019 Opt. Express 27 20824Google Scholar

  • 图 1  部分掺杂光纤 (a) 纤芯离子分布设计; (b) 折射率剖面

    Fig. 1.  Confined-doped fiber: (a) Designed distribution of ions in core; (b) refractive index profile.

    图 2  高功率光束质量MOPA结构测试系统

    Fig. 2.  High-power beam quality testing system with MOPA.

    图 3  部分掺杂光纤光束质量和输出功率

    Fig. 3.  Beam quality factor and output power of confined-doped fiber.

    图 4  反向泵浦全光纤激光振荡器结构

    Fig. 4.  Scheme of backward pumped fiber laser oscillator.

    图 5  (a) 不同泵浦功率下的输出激光功率、效率曲线; (b) 回光功率

    Fig. 5.  (a) Dependence of the output power and optical efficiency on the pump power; (b) back light power.

    图 6  不同功率下输出激光光谱特性

    Fig. 6.  Output laser spectra at different output power.

    图 7  输出功率达到3140 W时, PD1和PD2分别接收CLS2的泄露光和PM靶面的散射光的 (a) 时域; (b) 频域

    Fig. 7.  When the output power reaches 3140 W, the leakage light of CLS2 and scattering light of PM target surface: (a) Time domain; (b) frequency domain.

  • [1]

    Jauregui C, Jens L, Andreas T 2013 Nat. Photonics 7 861Google Scholar

    [2]

    Zervas M N, Codemard C A 2014 IEEE J. Sel. Top. Quantum Electron. 20 219Google Scholar

    [3]

    蒙红云, 廖键宏, 刘颂豪 2004 激光与光电子学进展 41 55

    Meng H Y, Liao J H, Liu S H 2004 Las. Optoelect. Prog. 41 55

    [4]

    楼祺洪, 朱健强, 周军, 朱晓峥, 王之江 2003 装备指挥技术学院学报 5 28

    Lou Q H, Zhu J Q, Zhou J, Zhu X Z, Wang Z J 2003 J. Equip. Acad. 5 28

    [5]

    李磐, 师红星, 符聪, 薛亚飞, 邹岩 2018 激光与光电子学进展 55 121406Google Scholar

    Li P, Shi H X, Fu C, Xue Y F, Zou Y 2018 Las. Optoelect. Prog. 55 121406Google Scholar

    [6]

    王雪娇, 肖起榕, 闫平, 陈霄, 李丹 2015 物理学报 64 164204Google Scholar

    Wang X J, Xiao Q R, Yan P, Chen X, Li D 2015 Acta Phys. Sin. 64 164204Google Scholar

    [7]

    王泽晖, 肖起榕, 王雪娇, 衣永青, 庞璐 2018 物理学报 67 024205Google Scholar

    Wang Z H, Xiao Q R, Wang X J, Yi Y Q, Pang L 2018 Acta Phys. Sin. 67 024205Google Scholar

    [8]

    张汉伟, 杨保来, 王小林, 史尘, 叶青 2018 中国激光 45 0415002

    Zhang H W, Yang B L, Wang X L, Shi C, Ye Q 2018 Chin. J. Las. 45 0415002

    [9]

    杨保来, 王小林, 叶云, 曾令筏, 张汉伟 2020 中国激光 47 0116001Google Scholar

    Yang B L, Wang X L, Ye Y, Zeng L F, Zhang H W 2020 Chin. J. Las. 47 0116001Google Scholar

    [10]

    Richardson D J, Nilsson J, Clarkson W 2010 J. Opt. Soc. Am. B 27 B63Google Scholar

    [11]

    Smith A V, Jesse J S 2011 Opt. Express 19 10180Google Scholar

    [12]

    Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F 2011 Opt. Express 19 13218Google Scholar

    [13]

    Ward B, Robin C, Dajani I 2012 Opt. Express 20 11407Google Scholar

    [14]

    Dong L 2013 Opt. Express 21 2642Google Scholar

    [15]

    Hansen K R, Alkeskjold T T, Broeng J 2013 Opt. Lett. 37 2382

    [16]

    Naderi S, Dajani I, Madden T 2013 Opt. Express 21 16111Google Scholar

    [17]

    Ye C, Koponen J, Kokki T, Kokki T, Ponsoda J M, Tervonen A, Honkanen S 2012 Proc. SPIE 8237, Fiber Lasers IX: Technology, Systems and Applications San Francisco, California, United State, February 2−15, 2012 p823737

    [18]

    Liao L, Zhang F, He X, Chen Y, Wang Y 2018 Appl. Opt. 57 3244Google Scholar

    [19]

    Mashiko Y, Nguyen H K, Kashiwagi M, Kitabayashi T, Shima K, Tanaka D 2016 Proc. SPIE 9728, Fiber Lasers XIII: Technology, Systems and Applications San Francisco, California, United State, March 3−9, 2016 p972805

    [20]

    Shima K, Ikoma S, Uchiyama K, Takubo Y, Kashiwagi M, Tanaka D 2018 Proc. SPIE 10512, Fiber Lasers XV: Technology and Systems San Francisco, California, United State, February 2−26, 2018 p10512C

    [21]

    Wang Y, Kitahara R, Kiyoyama W, Shirakura Y, Kurihara T, Nakanish Y 2020 Proc. SPIE 11260, Fiber Lasers XVII: Technology and Systems San Francisco, California, United State, February 2−21, 2020 p1126022

    [22]

    Liu Y, Zhang F, Zhao N, Lin X, Liao L 2018 Opt. Express 26 3421Google Scholar

    [23]

    Zhang F, Wang Y, Lin X, Cheng Y, Zhang Z 2019 Opt. Express 27 20824Google Scholar

  • [1] 林贤峰, 张志伦, 邢颍滨, 陈瑰, 廖雷, 彭景刚, 李海清, 戴能利, 李进延. 基于M型掺镱光纤的近单模2 kW光纤放大器. 物理学报, 2022, 71(3): 034205. doi: 10.7498/aps.71.20211751
    [2] 林贤峰, 张志伦, 邢颍滨, 陈瑰, 廖雷, 彭景刚, 李海清, 戴能利, 李进延. 基于M型掺镱光纤的近单模2 kW光纤放大器. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211751
    [3] 何婷, 田博宇, 邱蝶, 张彬. 基于直角锥面变形镜的薄管激光光束质量提升新方法. 物理学报, 2021, 70(17): 179501. doi: 10.7498/aps.70.20210603
    [4] 黄梓樾, 邓宇, 季小玲. 球差对高功率激光上行大气传输光束质量的影响. 物理学报, 2021, 70(23): 234202. doi: 10.7498/aps.70.20211226
    [5] 刘景良, 陈薪羽, 王睿明, 吴春婷, 金光勇. 基于中红外光参量振荡器光束质量优化的90°像旋转四镜非平面环形谐振腔型设计与分析. 物理学报, 2019, 68(17): 174201. doi: 10.7498/aps.68.20182001
    [6] 陈益沙, 廖雷, 李进延. 数值孔径对掺镱光纤振荡器模式不稳定阈值影响的实验研究. 物理学报, 2019, 68(11): 114206. doi: 10.7498/aps.68.20182257
    [7] 罗雪雪, 陶汝茂, 刘志巍, 史尘, 张汉伟, 王小林, 周朴, 许晓军. 少模光纤放大器中的准静态模式不稳定实验研究. 物理学报, 2018, 67(14): 144203. doi: 10.7498/aps.67.20180140
    [8] 周泰斗, 梁小宝, 李超, 黄志华, 封建胜, 赵磊, 王建军, 景峰. 基于透射型体布拉格光栅的两通道2.5 kW光谱组束输出. 物理学报, 2017, 66(8): 084204. doi: 10.7498/aps.66.084204
    [9] 陶汝茂, 周朴, 王小林, 司磊, 刘泽金. 高功率全光纤结构主振荡功率放大器中模式不稳定现象的实验研究. 物理学报, 2014, 63(8): 085202. doi: 10.7498/aps.63.085202
    [10] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [11] 周丽丹, 粟敬钦, 李平, 王文义, 刘兰琴, 张颖, 张小民. 高功率固体激光装置光学元件"缺陷"分布与光束近场质量的定量关系研究. 物理学报, 2011, 60(2): 024202. doi: 10.7498/aps.60.024202
    [12] 陶汝茂, 司磊, 马阎星, 邹永超, 周朴. 高能光纤激光经准直系统后的光束质量研究. 物理学报, 2011, 60(10): 104208. doi: 10.7498/aps.60.104208
    [13] 张远宪, 冯永利, 周丽, 普小云. 偏斜光线抽运下的回音壁模式光纤激光辐射特性. 物理学报, 2010, 59(3): 1802-1808. doi: 10.7498/aps.59.1802
    [14] 任广军, 魏臻, 姚建铨. 调Q脉冲保偏光纤激光器的研究. 物理学报, 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [15] 延凤平, 毛向桥, 王琳, 傅永军, 魏淮, 郑凯, 龚桃荣, 刘鹏, 陶沛琳, 简水生. 基于偏振保持掺Er3+光纤的高稳定性单波长光纤激光器. 物理学报, 2009, 58(9): 6296-6299. doi: 10.7498/aps.58.6296
    [16] 张远宪, 普小云, 祝昆, 韩德昱, 江楠. 回音壁模式光纤激光器的阈值特性研究. 物理学报, 2009, 58(5): 3179-3184. doi: 10.7498/aps.58.3179
    [17] 潘雷雷, 张彬, 阴素芹, 张艳. 掺Yb光纤激光器阵列谱合成系统的光束传输模型及光束特性分析. 物理学报, 2009, 58(12): 8289-8296. doi: 10.7498/aps.58.8289
    [18] 王建明, 段开椋, 王屹山. 两光纤激光器相干合成的实验研究. 物理学报, 2008, 57(9): 5627-5631. doi: 10.7498/aps.57.5627
    [19] 任广军, 张 强, 王 鹏, 姚建铨. 掺钕保偏光纤激光器的研究. 物理学报, 2007, 56(7): 3917-3923. doi: 10.7498/aps.56.3917
    [20] 王石语, 过 振, 傅君眉, 蔡德芳, 文建国, 唐映德. 抽运光分布对二极管抽运激光器振荡光光束质量的影响. 物理学报, 2004, 53(9): 2995-3003. doi: 10.7498/aps.53.2995
计量
  • 文章访问数:  6159
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-27
  • 修回日期:  2020-07-08
  • 上网日期:  2020-11-24
  • 刊出日期:  2020-12-05

/

返回文章
返回