搜索

x
中国物理学会期刊

非线性发展方程的丰富的Jacobi椭圆函数解

CSTR: 32037.14.aps.54.4501

Abundant Jacobi elliptic function solutions of nonlinear evolution equations

CSTR: 32037.14.aps.54.4501
PDF
导出引用
  • 通过把十二个Jacobi椭圆函数分类成四组,提出了新的广泛的Jacobi椭圆函数展开法,利用这一方法求得了非线性发展方程的丰富的Jacobi椭圆函数双周期解.当模数m→0或1时,这些解退化为相应的三角函数解或孤立波解和冲击波解.

     

    In this paper, the twelve Jacobi elliptic functions are divided into four groups, and a new general Jacobi elliptic function expansion method is proposed to construct abundant doubly periodic Jacobi elliptic function solutions of nonlinear evolution equations. By this method, many exact doubly periodic solutions are obtained which shows the powerfulness of this method. When the modulus m→1 or 0, these solutions degenerate to the corresponding solitary wave solutions, shock wave solutions or trigonometric function (singly periodic) solutions.

     

    目录

    /

    返回文章
    返回