搜索

x
中国物理学会期刊

两步法制备空间取向高度一致的ZnO纳米棒阵列

CSTR: 32037.14.aps.57.2582

Two-step growth of highly oriented ZnO nanorod arrays

CSTR: 32037.14.aps.57.2582
PDF
导出引用
  • 采用两步法,即先用磁控溅射在Si(100)表面生长一层ZnO籽晶层、再利用液相法制备空间取向高度一致的ZnO纳米棒阵列.用扫描电子显微镜、X射线衍射、高分辨透射电子显微镜和选区电子衍射对样品形貌和结构特征进行了表征.结果表明,ZnO纳米棒具有垂直于衬底沿c轴择优生长和空间取向高度一致的特性和比较大的长径比,X射线衍射的(XRD)(0002)峰半高宽只有0.06°,选区电子衍射也显示了优异的单晶特性.光致发光谱表明ZnO纳米棒具有非常强的紫外本征发光和非常弱的杂质或缺陷发光特性.

     

    Well aligned ZnO nanorod arrays on Si substrate previously coated with a thin buffer layer of ZnO seeds via radio-frequency magnetron sputtering, which were synthesized by the aqueous solution method. The sample was characterized by scanning electron microscopy, X-ray diffraction, high-resolution transmission electron microscopy and selected area electron diffraction. The results show that ZnO nanorods have good crystal quality, are highly oriented and grown along c-axis. The full width at half maximum of the (0002) peaks of the nanorod arrays is only 0.06°. Furthermore, a strong and narrow eigen peak centered at 378nm and very weak emission in visible region due to impurities or defects were observed in the photoluminescence spectra.

     

    目录

    /

    返回文章
    返回