搜索

x
中国物理学会期刊

AlN/Si3N4纳米多层膜的外延生长与力学性能

CSTR: 32037.14.aps.57.5151

Epitaxial growth and mechanical properties of AlN/Si3N4 nanostructured multilayers

CSTR: 32037.14.aps.57.5151
PDF
导出引用
  • 采用射频磁控溅射方法制备单层AlN, Si3N4薄膜和不同调制周期的AlN/Si3N4纳米多层膜.采用X射线衍射仪、高分辨透射电子显微镜和纳米压痕仪对薄膜进行表征.结果发现,多层膜中Si3N4层的晶体结构和多层膜的硬度依赖于Si3N4层的厚度.当AlN层厚度为4.0nm、 Si3N4层厚度

     

    Monolithic AlN,Si3N4 films and AlN/Si3N4 multilayers with different modulation periods were prepared by reactively magnetic sputtering. The films were characterized by X-ray diffraction, high-resolution transmission electron microscopy and nanoindentation. The results showed that the crystal structure of Si3N4 layers in the multilayers and the hardness of AlN/Si3N4 multilayers depend on the thickness of Si3N4 layer. When the thickness of AlN is 4.0nm and that of Si3N4 layer is 0.4nm, Si3N4 layers grew epitaxially with AlN and form strong columnar crystals which extend over several modulation periods. A large degree of hardness enhancement of the multilayer was produced. The microstructure of Si3N4 changes from crystalline to amorphous as Si3N4 thickness increases, leading to blocking of the epitaxial growth and the superhardness effect disappears. The critical thickness of Si3N4 layers, which marks the change from crystalline to amorphous, has been calculated through thermodynamic and elastic considerations. The hardening mechanisms of AlN/Si3N4 multilayers are discussed.

     

    目录

    /

    返回文章
    返回