搜索

x
中国物理学会期刊

退火诱导机械合金化Fe42.5Al42.5Ti5B10合金的结构演变与晶粒生长动力学

CSTR: 32037.14.aps.57.5774

Structural evolution and grain growth kinetics of the mechanically alloyed Fe42.5Al42.5Ti5B10 induced by annealing

CSTR: 32037.14.aps.57.5774
PDF
导出引用
  • 利用XRD和TEM方法研究Fe42.5Al42.5Ti5B10合金在机械合金化及等温热处理过程中的结构演变及晶粒生长动力学,讨论了机械合金化合成机理和热处理过程中的晶粒生长机理.结果表明,球磨过程中Al,Ti,B原子向Fe晶格中扩散,形成Fe(Al,Ti,B)固溶体.机械合金化合成Fe(Al,Ti,B)遵循连续扩散混合机理.球磨50h后,金属Fe,Al,Ti,B已完全合金化,球磨终产物为纳米晶Fe(Al,Ti,B).球

     

    The XRD and TEM techniques were used to study the structural evolution in the mechanical alloying and annealing of Fe42.5Al42.5Ti5B10. The mechanical alloying mechanism during ball milling and the grain growth mechanism during annealing of the powder are also discussed. The results show that the diffusion of Al,Ti and B atoms into Fe lattice occurs during milling,leading to the formation of Fe(Al,Ti,B) solid solution. The process is controlled by continuous diffusion mixing mechanism. The alloying reaction is completed after 50h and the final product is a powder composed of nanocrystalline Fe(Al,Ti,B). Besides the relaxation of crystal defaults and lattice stress,the decomposition of Fe(Al,Ti,B) occurs to form FeAl and TiB2 during heat treatment of the 50h milled powder. The activation energy for the nanocrystalline FeAl growth was calculated to be 525.6kJ/mol according to kinetics theory of nanocrystalline growth.

     

    目录

    /

    返回文章
    返回