搜索

x
中国物理学会期刊

TiO2颗粒尺寸对染料敏化太阳电池内电子输运特性影响研究

CSTR: 32037.14.aps.58.1338

Effect of TiO2 particle size on the properties of electron transport and back-reaction in dye-sensitized solar cells

CSTR: 32037.14.aps.58.1338
PDF
导出引用
  • 采用强度调制光电流谱(IMPS)和强度调制光电压谱(IMVS)研究了染料敏化太阳电池(DSC)内部电子传输和背反应动力学特性.在纳米TiO2薄膜厚度相同的情况下,借助于IMPS/IMVS测量了由3种不同TiO2颗粒尺寸大小薄膜制备出DSC的电荷传输特征参数值.IMPS/IMVS理论模型拟合实验测量数据的结果表明:在不同入射光强下,随着颗粒尺寸的增大,电子扩散系数(Dn)增大,而电子寿命(τn

     

    The mechanisms of electron transport and back-reaction kinetics in dye-sensitized solar cell (DSC) were investigated by intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS). The DSCS with three different sizes of TiO2 particles were measured by IMPS/IMVS. The results indicate that the effective diffusion coefficient (Dn) increases along with the increase of particle size, while the electron lifetime (τn) and the electron transit time (τd) decrease with the increase of particle size under different induced-light intensities. The increase of Dn is attributive to the decrease of the film surface area. The decrease of τn is interpreted according to the frequency of electron trapping and de-trapping in defects. The decrease of trap concentration in TiO2 films leads to the decrease of τd.

     

    目录

    /

    返回文章
    返回