搜索

x
中国物理学会期刊

利用Gupta势结合遗传算法研究ConCu55-n(n=0—55)混合团簇的结构演化及基态能量

CSTR: 32037.14.aps.59.5672

Study of the structure evolution and ground state energy of ConCu55-n(n=0—55) bimetallic clusters by using the Gupta potential combined with a genetic algorithm

CSTR: 32037.14.aps.59.5672
PDF
导出引用
  • 采用半经验的Gupta多体势结合遗传算法对ConCu55-n(n=0—55)混合团簇的基态结构和能量进行了研究,发现这些混合团簇的基态结构是在Co55,Cu55单质团簇(Mackay二十面体)的基础之上发生的畸变;从n=0(Cu55)开始,Co原子从中心到表面,从棱到顶点依次、连续替换Cu原子;基态结构与键能较大键的数目及其平均键长有关;Co13Cu42具有最稳定的结构,13个Co原子全部位于团簇内部形成Mackay二十面体对整个团簇的稳定性有显著影响.

     

    The ground-state structures and energies of the bimetallic clusters ConCu55-n(n=0—55) were obtained by using the semi-empirical Gupta potential combined with a genetic algorithm. The ground-state geometries of those bimetallic clusters can be characterized by the basic Mackay icosahedron of the pure Co55 (Cu55) cluster. Beginning with n=0 (Cu55), the Cu atom(s) is(are) replaced in order and continuously by the Co atom(s) from the center to the surface and from the edge to the vertex. The ground-state structure depends on the number of the Co—Co bonds which have the largest energy, the number of the Co-Cu bonds with large energy and the average bond length of those bonds. Co13Cu42 is a magic cluster with an icosahedral core formed by 13 Co atoms, which plays a key role in the high stability of those bimetallic clusters.

     

    目录

    /

    返回文章
    返回