搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀土钇、镧掺杂TiO2薄膜的拉曼谱分析

马忠权 徐飞 赵磊 李凤 何波 杨昌虎

稀土钇、镧掺杂TiO2薄膜的拉曼谱分析

马忠权, 徐飞, 赵磊, 李凤, 何波, 杨昌虎
PDF
导出引用
导出核心图
  • 采用溶胶-凝胶法在石英玻璃衬底上用旋涂法制备了未掺杂、掺杂钇和掺杂镧的TiO2薄膜样品,对样品在700—1100 ℃范围内进行退火处理,并对样品的拉曼光谱进行了分析.分析表明:随着退火温度的升高,未掺杂TiO2薄膜发生了从锐钛矿相经混相最终向金红石相的转换,掺杂钇和掺杂镧对TiO2薄膜的晶相转换起阻碍作用,掺杂镧的阻碍作用更强;稀土掺杂能使TiO2薄膜晶粒细化,并使晶粒内部应力增大从而阻碍晶格振动,掺杂镧比掺杂钇的效果
    • 基金项目: 国家自然科学基金(批准号:60876045),上海市重点学科建设项目(批准号:S30105),上海市教委创新基金(批准号:08YZ12),SHU-SOEN's PV 联合实验室基金(批准号:SS-E0700601)和上海市基础研究重点项目(批准号:09JC1405900)资助的课题.
    [1]

    Zhang Y, Zhao Y, Cai N, Xiong S Z 2008 Acta Phys. Sin. 57 5806 (in Chinese)[张 苑、赵 颖、蔡 宁、熊绍珍 2008 物理学报 57 5806]

    [2]

    Liang L Y, Dai S Y, Hu L H, Dai J, Liu W Q 2009 Acta Phys. Sin. 58 1338 (in Chinese)[梁林云、戴松元、胡林华、戴 俊、刘伟庆 2008 物理学报 58 1338]

    [3]

    Kashif N, Ou Y F 2009 J Environ. Sci-China 21 527

    [4]

    Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M 2008 Environ. Pollut. 156 233

    [5]

    Uroebayashi T, Yamaki T, Itoh H, Asai K 2002 Appl. Phys. Lett. 81 454

    [6]

    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science 293 269

    [7]

    Wu J C S, Chen C H 2004 J. Photochem. Photobiol. A: Chemistry 163 509

    [8]

    Zhang C Q, Zhang X 1997 Rare Earth Metallurgy Principles and Processes (Beijing: Metallurgical Industry Press) p58 (in Chinese) [张长鑫、张 新 1997 稀土冶金原理与工艺 (北京: 冶金工业出版社) 第58页]

    [9]

    Ivanda M, Musi Dc' S, Goti Dc' M, Turkovi Dc' A, Tonejc A M, Gamulin O 1999 J. Mol. Struct. 480-481 641

    [10]

    Mathews N R, Morales E R, Cortés-Jacome M A, Toledo Antonio J A 2009 Solar Energy 83 1499

    [11]

    Zeng Q G, Ding Z J, Zhang Z M 2006 J. Lumin. 118 301

    [12]

    Saif M, Abdel-Mottaleb M S A 2007 Inorg. Chim. Acta 360 2863

    [13]

    Chen S Y, Ting C C, Hsieh W F 2003 Thin Solid Films 434 171

    [14]

    Battisha I K 2007 J. Non-Cryst. Solids 353 1748

    [15]

    Wang S F, Hsu Y F, Lee R L, Lee Y S 2004 Appl. Surf. Sci. 229 140

    [16]

    Wu X H, Qin W, Wang S, Jiang Z H, Guo Y, Xie Z Y 2006 Rare Metals 25 169

    [17]

    Prociow E L, Domaradzki J, Podhorodecki A, Borkowska A, Kaczmarek D, Misiewicz J 2007 Thin Solid Films 515 6344

    [18]

    Zhang W J, Wang K L, Zhu S L, Li Y, Wang F H, He H B 2009 Chem. Eng. J. 155 83

    [19]

    Huang H, Luo H J, Yao X 2002 Acta Phys. Sin. 51 1881 (in Chinese)[黄 晖、罗宏杰、姚 熹 2002 物理学报 51 1881]

    [20]

    Balachandran U, Eror N G 1982 J. Solid State Chem. 42 276

    [21]

    Swamy V, Kuznetsov A, Dubrovinsky L S, Caruso R A, Shchukin D G, Muddle B C 2005 Phys. ReV. B 71 184302

    [22]

    Orendorz A, Brodyanski A, Lsch J, Bai L H, Chen Z H, Le Y K, Ziegler C, Gnaser H 2007 Surf. Sci. 601 4390

    [23]

    Foger K, Anderson J R 1986 Appl. Catal. A23 139

    [24]

    Xia B, Huang H, Xie Y 1999 Mater. Sci. Eng. B 57 150

    [25]

    Hyun C C, Young M J, Seung B K 2005 Vib. Spectrosc 37 33

    [26]

    Turkovi Dc' A, Ivanda M, Popovi Dc' S, Toncjc A, Goti Dc' M, Dub Dc' ek P, Musi Dc' S 1997 J. Mol. Struct. 410 271

    [27]

    Musi Dc' S, Goti Dc' M, Ivanda M, Popovi Dc' S, Turkovi Dc' A, Trojko R, Sekuli Dc' A, Furi Dc' K 1997 Mater. Sci. Eng. B 47 33

    [28]

    Yin L S, Tan M, Chen Y P, Li T, Fan H L 2008 J. Cent. South Univ. (Science and Technology) 39 665 (in Chinese) [尹荔松、谭 敏、陈永平、李 婷、范海陆 2008 中南大学学报 (自然科学版) 39 665]

    [29]

    Ya J, Jia D, Liu Y Z 2001 Journal of the Chinese Ceramic Society 29 90 (in Chinese) [雅 菁、贾 堤、刘云兆 2001 硅酸盐学报 29 90]

    [30]

    Xu Z Y, Li P X 1986 Introduction to Marterial Science (Shanghai: Shanghai scientific & Technical Publishers) p326 (in Chinese) [徐祖耀、李鹏兴 1986 材料科学导论 (上海: 上海科技出版社) 第326页]

    [31]

    Zhang S L 2008 Raman spectroscopy and Low-dimensional Nanometer Semiconductor (Beijing: Science Press) p218 (in Chinese) [张树霖 2008 拉曼光谱学与低维纳米半导体 (北京: 科学出版社) 第218页]

    [32]

    Bersani D, Lottici P P, Ding X Z 1997 Appl. Phys. Lett. 72 73

  • [1]

    Zhang Y, Zhao Y, Cai N, Xiong S Z 2008 Acta Phys. Sin. 57 5806 (in Chinese)[张 苑、赵 颖、蔡 宁、熊绍珍 2008 物理学报 57 5806]

    [2]

    Liang L Y, Dai S Y, Hu L H, Dai J, Liu W Q 2009 Acta Phys. Sin. 58 1338 (in Chinese)[梁林云、戴松元、胡林华、戴 俊、刘伟庆 2008 物理学报 58 1338]

    [3]

    Kashif N, Ou Y F 2009 J Environ. Sci-China 21 527

    [4]

    Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M 2008 Environ. Pollut. 156 233

    [5]

    Uroebayashi T, Yamaki T, Itoh H, Asai K 2002 Appl. Phys. Lett. 81 454

    [6]

    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science 293 269

    [7]

    Wu J C S, Chen C H 2004 J. Photochem. Photobiol. A: Chemistry 163 509

    [8]

    Zhang C Q, Zhang X 1997 Rare Earth Metallurgy Principles and Processes (Beijing: Metallurgical Industry Press) p58 (in Chinese) [张长鑫、张 新 1997 稀土冶金原理与工艺 (北京: 冶金工业出版社) 第58页]

    [9]

    Ivanda M, Musi Dc' S, Goti Dc' M, Turkovi Dc' A, Tonejc A M, Gamulin O 1999 J. Mol. Struct. 480-481 641

    [10]

    Mathews N R, Morales E R, Cortés-Jacome M A, Toledo Antonio J A 2009 Solar Energy 83 1499

    [11]

    Zeng Q G, Ding Z J, Zhang Z M 2006 J. Lumin. 118 301

    [12]

    Saif M, Abdel-Mottaleb M S A 2007 Inorg. Chim. Acta 360 2863

    [13]

    Chen S Y, Ting C C, Hsieh W F 2003 Thin Solid Films 434 171

    [14]

    Battisha I K 2007 J. Non-Cryst. Solids 353 1748

    [15]

    Wang S F, Hsu Y F, Lee R L, Lee Y S 2004 Appl. Surf. Sci. 229 140

    [16]

    Wu X H, Qin W, Wang S, Jiang Z H, Guo Y, Xie Z Y 2006 Rare Metals 25 169

    [17]

    Prociow E L, Domaradzki J, Podhorodecki A, Borkowska A, Kaczmarek D, Misiewicz J 2007 Thin Solid Films 515 6344

    [18]

    Zhang W J, Wang K L, Zhu S L, Li Y, Wang F H, He H B 2009 Chem. Eng. J. 155 83

    [19]

    Huang H, Luo H J, Yao X 2002 Acta Phys. Sin. 51 1881 (in Chinese)[黄 晖、罗宏杰、姚 熹 2002 物理学报 51 1881]

    [20]

    Balachandran U, Eror N G 1982 J. Solid State Chem. 42 276

    [21]

    Swamy V, Kuznetsov A, Dubrovinsky L S, Caruso R A, Shchukin D G, Muddle B C 2005 Phys. ReV. B 71 184302

    [22]

    Orendorz A, Brodyanski A, Lsch J, Bai L H, Chen Z H, Le Y K, Ziegler C, Gnaser H 2007 Surf. Sci. 601 4390

    [23]

    Foger K, Anderson J R 1986 Appl. Catal. A23 139

    [24]

    Xia B, Huang H, Xie Y 1999 Mater. Sci. Eng. B 57 150

    [25]

    Hyun C C, Young M J, Seung B K 2005 Vib. Spectrosc 37 33

    [26]

    Turkovi Dc' A, Ivanda M, Popovi Dc' S, Toncjc A, Goti Dc' M, Dub Dc' ek P, Musi Dc' S 1997 J. Mol. Struct. 410 271

    [27]

    Musi Dc' S, Goti Dc' M, Ivanda M, Popovi Dc' S, Turkovi Dc' A, Trojko R, Sekuli Dc' A, Furi Dc' K 1997 Mater. Sci. Eng. B 47 33

    [28]

    Yin L S, Tan M, Chen Y P, Li T, Fan H L 2008 J. Cent. South Univ. (Science and Technology) 39 665 (in Chinese) [尹荔松、谭 敏、陈永平、李 婷、范海陆 2008 中南大学学报 (自然科学版) 39 665]

    [29]

    Ya J, Jia D, Liu Y Z 2001 Journal of the Chinese Ceramic Society 29 90 (in Chinese) [雅 菁、贾 堤、刘云兆 2001 硅酸盐学报 29 90]

    [30]

    Xu Z Y, Li P X 1986 Introduction to Marterial Science (Shanghai: Shanghai scientific & Technical Publishers) p326 (in Chinese) [徐祖耀、李鹏兴 1986 材料科学导论 (上海: 上海科技出版社) 第326页]

    [31]

    Zhang S L 2008 Raman spectroscopy and Low-dimensional Nanometer Semiconductor (Beijing: Science Press) p218 (in Chinese) [张树霖 2008 拉曼光谱学与低维纳米半导体 (北京: 科学出版社) 第218页]

    [32]

    Bersani D, Lottici P P, Ding X Z 1997 Appl. Phys. Lett. 72 73

  • [1] 王晓栋, 沈军, 王生钊, 张志华. 椭偏光谱法研究溶胶-凝胶TiO2薄膜的光学常数. 物理学报, 2009, 58(11): 8027-8032. doi: 10.7498/aps.58.8027
    [2] 蒋晓东, 魏晓峰, 李志宏, 吴忠华, 徐 耀, 章 斌, 吴 东, 孙予罕, 梁丽萍, 张 磊. PVP掺杂-ZrO2溶胶-凝胶工艺制备多层激光高反射膜的研究. 物理学报, 2006, 55(11): 6175-6184. doi: 10.7498/aps.55.6175
    [3] 李志宏, 吴忠华, 徐 耀, 吴 东, 孙予罕, 梁丽萍, 张 磊. 溶胶-凝胶方法制备ZrO2及聚合物掺杂ZrO2单层光学增反射膜. 物理学报, 2006, 55(8): 4371-4382. doi: 10.7498/aps.55.4371
    [4] 毛鑫光, 王俊, 沈杰. 磁控溅射制备Er3+/Yb3+共掺杂TiO2薄膜的上转换发光特性. 物理学报, 2014, 63(8): 087803. doi: 10.7498/aps.63.087803
    [5] 赵明磊, 王春雷, 钟维烈, 王矜奉, 陈洪存. 溶胶-凝胶法制备Bi0.5Na0.5TiO3陶瓷及其电学特性. 物理学报, 2003, 52(1): 229-232. doi: 10.7498/aps.52.229
    [6] 蒋晓东, 魏晓峰, 徐 耀, 吴 东, 孙予罕, 梁丽萍, 盛永刚, 张 磊. 溶胶-凝胶ZrO2-TiO2高折射率光学膜层的抗激光损伤性能研究. 物理学报, 2007, 56(6): 3596-3601. doi: 10.7498/aps.56.3596
    [7] 何志巍, 甄聪棉, 兰 伟, 王印月. 溶胶-凝胶法制备纳米多孔SiO2薄膜. 物理学报, 2003, 52(12): 3130-3134. doi: 10.7498/aps.52.3130
    [8] 高书霞, 王德义, 李刚, 赵鸣. 溶胶-凝胶法制备Li-N双掺p型ZnO薄膜的结构、光学和电学性能. 物理学报, 2010, 59(5): 3473-3480. doi: 10.7498/aps.59.3473
    [9] 李荣, 罗小玲, 梁国明, 付文升. 稀土元素掺杂对VH2解氢性能的影响. 物理学报, 2012, 61(9): 093601. doi: 10.7498/aps.61.093601
    [10] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [11] 刘胜利, 厉建峥, 程杰, 王海云, 李永涛, 张红光, 李兴鳌. 强自旋轨道耦合化合物Sr2-xLaxIrO4的掺杂和拉曼谱学. 物理学报, 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [12] 刘义, 张清, 李海金, 李勇, 刘厚通. Sr掺杂钙钛矿型氧化物Y1-xSrxCoO3的溶胶-凝胶制备及电阻率温度关系研究. 物理学报, 2013, 62(4): 047202. doi: 10.7498/aps.62.047202
    [13] 雷天民, 吴胜宝, 张玉明, 郭辉, 陈德林, 张志勇. La, Ce, Nd掺杂对单层MoS2电子结构的影响. 物理学报, 2014, 63(6): 067301. doi: 10.7498/aps.63.067301
    [14] 萧季驹, 丁 硕, 刘玉龙. 不同晶粒尺寸SnO2纳米粒子的拉曼光谱研究. 物理学报, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [15] 王志光, 魏孔芳, 孙建荣, 缑洁, 盛彦斌, 臧航, 庞立龙, 姚存峰, 申铁龙, 马艺准, 朱亚滨. 离子注入ZnO薄膜的拉曼光谱研究. 物理学报, 2010, 59(7): 4831-4836. doi: 10.7498/aps.59.4831
    [16] 李世帅, 张仲, 黄金昭, 冯秀鹏, 刘如喜. In掺杂ZnO薄膜的制备及其白光发射机理. 物理学报, 2011, 60(9): 097405. doi: 10.7498/aps.60.097405
    [17] 刘方舒, 吴定才, 胡志刚, 段满益, 徐禄祥, 董成军, 吴艳南, 纪红萱, 徐明. Co与Cu掺杂ZnO薄膜的制备与光致发光研究. 物理学报, 2009, 58(10): 7261-7266. doi: 10.7498/aps.58.7261
    [18] 梁源, 邢怀中, 晁明举, 梁二军. CO2激光烧结合成负热膨胀材料Sc2(MO4)3(M=W, Mo)及其拉曼光谱. 物理学报, 2014, 63(24): 248106. doi: 10.7498/aps.63.248106
    [19] 周海亮, 顾庆天, 张清华, 刘宝安, 朱丽丽, 张立松, 张芳, 许心光, 王正平, 孙洵, 赵显. NH4H2PO4和ND4D2PO4晶体微结构的拉曼光谱研究. 物理学报, 2015, 64(19): 197801. doi: 10.7498/aps.64.197801
    [20] 杨天勇, 孔春阳, 阮海波, 秦国平, 李万俊, 梁薇薇, 孟祥丹, 赵永红, 方亮, 崔玉亭. N离子注入富氧ZnO薄膜的p型导电及拉曼特性研究. 物理学报, 2013, 62(3): 037703. doi: 10.7498/aps.62.037703
  • 引用本文:
    Citation:
计量
  • 文章访问数:  4162
  • PDF下载量:  993
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-25
  • 修回日期:  2010-01-06
  • 刊出日期:  2010-09-15

稀土钇、镧掺杂TiO2薄膜的拉曼谱分析

  • 1. (1)上海大学物理系索朗光伏材料与器件联合实验室,上海 200444; (2)上海大学物理系索朗光伏材料与器件联合实验室,上海 200444;长沙理工大学物理与电子科学学院,长沙 410004
    基金项目: 

    国家自然科学基金(批准号:60876045),上海市重点学科建设项目(批准号:S30105),上海市教委创新基金(批准号:08YZ12),SHU-SOEN's PV 联合实验室基金(批准号:SS-E0700601)和上海市基础研究重点项目(批准号:09JC1405900)资助的课题.

摘要: 采用溶胶-凝胶法在石英玻璃衬底上用旋涂法制备了未掺杂、掺杂钇和掺杂镧的TiO2薄膜样品,对样品在700—1100 ℃范围内进行退火处理,并对样品的拉曼光谱进行了分析.分析表明:随着退火温度的升高,未掺杂TiO2薄膜发生了从锐钛矿相经混相最终向金红石相的转换,掺杂钇和掺杂镧对TiO2薄膜的晶相转换起阻碍作用,掺杂镧的阻碍作用更强;稀土掺杂能使TiO2薄膜晶粒细化,并使晶粒内部应力增大从而阻碍晶格振动,掺杂镧比掺杂钇的效果

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回