搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

k光子Jaynes-Cummings模型与运动原子相互作用中的熵交换及纠缠

王继成 廖庆洪 王月媛 王跃科 刘树田

k光子Jaynes-Cummings模型与运动原子相互作用中的熵交换及纠缠

王继成, 廖庆洪, 王月媛, 王跃科, 刘树田
PDF
导出引用
导出核心图
  • 文章研究了k光子Jaynes-Cummings模型与运动原子相互作用中的熵相互关系及纠缠特性.发现原子与光场之间具有熵交换特性.讨论了原子运动、光子数k和场模结构等因素对原子与光场熵相互关系的影响.此外,讨论了原子与场系统熵交换与纠缠之间的关系.
    • 基金项目: 国家重点基础研究发展计划 (批准号:2011CB301801)和国家自然科学基金(批准号:10974039)资助的课题
    [1]

    Keyl M 2002 Phys. Rep. 369 431

    [2]
    [3]

    Galindo A, Martin D M A 2002 Rev. Mod. Phys. 74 347

    [4]
    [5]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [6]

    Peres A, Terno D R 2004 Rev. Mod. Phys. 76 93

    [7]
    [8]

    Vedral V, Plenio M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275

    [9]
    [10]

    Vedral V, Plenio M B 1998 Phys. Rev. A 57 1619

    [11]
    [12]
    [13]

    Bennett C H, Divicenzo D P, Smolin J A, Wootters W K 1996 Phys. Rev. A 54 3824

    [14]

    Phoenix S J D, Knight P L 1988 Ann. Phys. 186 381

    [15]
    [16]
    [17]

    Phoenix S J D, Knight P L 1991 Phys. Rev. A 44 6023

    [18]

    Gea-Banacloche J 1990 Phys. Rev. Lett. 65 3385

    [19]
    [20]

    Gea-Banacloche J 1991 Phys. Rev. A 44 5913

    [21]
    [22]
    [23]

    Fang M F, Zhou P 1996 Physica A 234 571

    [24]

    Fang M F, Liu X 2000 Acta Phys. Sin. 49 0435 (in Chinese) [方卯发、刘 翔 2000 物理学报 49 0435]

    [25]
    [26]

    Liu X, Fang M F 2002 Chin. Phys. 11 0926

    [27]
    [28]
    [29]

    Li C X, Fang M F 2003 Chin. Phys.12 0294

    [30]

    Zeng K, Fang M F 2005 Chin. Phys. 14 2009

    [31]
    [32]
    [33]

    Ouyang X C, Fang M F 2010 Chin. Phys. B 19 030309

    [34]

    Bennett C H, Bernstein H J, Popescu S, Schumacher B 1996 Phys. Rev. A 53 2046

    [35]
    [36]
    [37]

    Popescu S, Rohrlich D 1997 Phys. Rev. A 56 R3319

    [38]

    Bužek V, Hladk B 1993 J. Mod. Opt. 40 1309

    [39]
    [40]
    [41]

    Bashkirov E K, Rusakova M S 2008 Opt. Commun. 281 4380

    [42]

    Mahmoud A A, Abd Al-Kader G M, Obada A S F 2001 Chaos, Sol. Frac. 12 2455

    [43]
    [44]

    Fang M F 1994 Physica A 204 193

    [45]
    [46]

    Abdalla M S, Obada A S F, Abdel-Khalek S 2008 Chaos, Sol. Frac. 36 405

    [47]
    [48]
    [49]
    [50]

    Liu X J, Zhou Y J, Fang M F 2009 Chin. Phys. B 18 1674

    [51]
    [52]

    Boukobza E, Tannor D J 2005 Phys. Rev. A 71 063821

    [53]

    Yan X Q, Shao B, Zou J 2008 Chaos, Soli. Frac. 37 835

    [54]
    [55]
    [56]

    Xiang Y, Xiong S J 2007 Phys. Rev. A 76 014306

    [57]
    [58]

    Hou X W, Chen J H, Wan M F, Ma Z Q 2009 J. Phys. A 42 075301

    [59]

    Zhang J, Shao B, Zou J 2008 Commun. Theor. Phys. 49 1463

    [60]
    [61]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89

    [62]
    [63]
    [64]

    Font J L, Fernandez-Soler J J, Vilaseca R, Gauthier D J 2005 Phys. Rev. A 72 063810

    [65]
    [66]

    Kuang L M, Chen X, Ge M L 1995 Phys. Rev. A 52 1857

    [67]
    [68]

    Sargent Jr M, Scully M O, Lamb W E Jr 1974 Laser Physics (Reading, MA: Addison-Wesley)

    [69]
    [70]

    Virmani S, Plenio M B 2000 Phys. Lett. A 268 31

    [71]
    [72]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [73]

    Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022

    [74]
    [75]
    [76]

    Bose S, Fuentes-Guridi I, Knight P L, Vedral V 2001 Phys. Rev. Lett. 87 050401

    [77]

    Yu T, Eberly J H 2007 Quant. Inf. Comput. 7 459

  • [1]

    Keyl M 2002 Phys. Rep. 369 431

    [2]
    [3]

    Galindo A, Martin D M A 2002 Rev. Mod. Phys. 74 347

    [4]
    [5]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [6]

    Peres A, Terno D R 2004 Rev. Mod. Phys. 76 93

    [7]
    [8]

    Vedral V, Plenio M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275

    [9]
    [10]

    Vedral V, Plenio M B 1998 Phys. Rev. A 57 1619

    [11]
    [12]
    [13]

    Bennett C H, Divicenzo D P, Smolin J A, Wootters W K 1996 Phys. Rev. A 54 3824

    [14]

    Phoenix S J D, Knight P L 1988 Ann. Phys. 186 381

    [15]
    [16]
    [17]

    Phoenix S J D, Knight P L 1991 Phys. Rev. A 44 6023

    [18]

    Gea-Banacloche J 1990 Phys. Rev. Lett. 65 3385

    [19]
    [20]

    Gea-Banacloche J 1991 Phys. Rev. A 44 5913

    [21]
    [22]
    [23]

    Fang M F, Zhou P 1996 Physica A 234 571

    [24]

    Fang M F, Liu X 2000 Acta Phys. Sin. 49 0435 (in Chinese) [方卯发、刘 翔 2000 物理学报 49 0435]

    [25]
    [26]

    Liu X, Fang M F 2002 Chin. Phys. 11 0926

    [27]
    [28]
    [29]

    Li C X, Fang M F 2003 Chin. Phys.12 0294

    [30]

    Zeng K, Fang M F 2005 Chin. Phys. 14 2009

    [31]
    [32]
    [33]

    Ouyang X C, Fang M F 2010 Chin. Phys. B 19 030309

    [34]

    Bennett C H, Bernstein H J, Popescu S, Schumacher B 1996 Phys. Rev. A 53 2046

    [35]
    [36]
    [37]

    Popescu S, Rohrlich D 1997 Phys. Rev. A 56 R3319

    [38]

    Bužek V, Hladk B 1993 J. Mod. Opt. 40 1309

    [39]
    [40]
    [41]

    Bashkirov E K, Rusakova M S 2008 Opt. Commun. 281 4380

    [42]

    Mahmoud A A, Abd Al-Kader G M, Obada A S F 2001 Chaos, Sol. Frac. 12 2455

    [43]
    [44]

    Fang M F 1994 Physica A 204 193

    [45]
    [46]

    Abdalla M S, Obada A S F, Abdel-Khalek S 2008 Chaos, Sol. Frac. 36 405

    [47]
    [48]
    [49]
    [50]

    Liu X J, Zhou Y J, Fang M F 2009 Chin. Phys. B 18 1674

    [51]
    [52]

    Boukobza E, Tannor D J 2005 Phys. Rev. A 71 063821

    [53]

    Yan X Q, Shao B, Zou J 2008 Chaos, Soli. Frac. 37 835

    [54]
    [55]
    [56]

    Xiang Y, Xiong S J 2007 Phys. Rev. A 76 014306

    [57]
    [58]

    Hou X W, Chen J H, Wan M F, Ma Z Q 2009 J. Phys. A 42 075301

    [59]

    Zhang J, Shao B, Zou J 2008 Commun. Theor. Phys. 49 1463

    [60]
    [61]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89

    [62]
    [63]
    [64]

    Font J L, Fernandez-Soler J J, Vilaseca R, Gauthier D J 2005 Phys. Rev. A 72 063810

    [65]
    [66]

    Kuang L M, Chen X, Ge M L 1995 Phys. Rev. A 52 1857

    [67]
    [68]

    Sargent Jr M, Scully M O, Lamb W E Jr 1974 Laser Physics (Reading, MA: Addison-Wesley)

    [69]
    [70]

    Virmani S, Plenio M B 2000 Phys. Lett. A 268 31

    [71]
    [72]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [73]

    Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022

    [74]
    [75]
    [76]

    Bose S, Fuentes-Guridi I, Knight P L, Vedral V 2001 Phys. Rev. Lett. 87 050401

    [77]

    Yu T, Eberly J H 2007 Quant. Inf. Comput. 7 459

  • [1] 方卯发, 周清平, 刘小娟. 具有原子运动的双光子J-C模型中量子力学通道与量子互熵. 物理学报, 2005, 54(2): 703-709. doi: 10.7498/aps.54.703
    [2] 任 珉, 康冬鹏, 刘正君, 刘树田, 马爱群, 钱 妍. k光子Jaynes-Cummings模型光场的熵压缩. 物理学报, 2008, 57(2): 873-879. doi: 10.7498/aps.57.873
    [3] 胡要花. Stark位移对热环境下双Jaynes-Cummings模型中原子纠缠的影响. 物理学报, 2012, 61(16): 160304. doi: 10.7498/aps.61.160304
    [4] 崔丛丛, 谢双媛, 羊亚平. 频率变化的光场对双J-C模型中原子-原子纠缠的调控. 物理学报, 2012, 61(12): 124206. doi: 10.7498/aps.61.124206
    [5] 王忠纯. Tavis-Cummings模型中原子运动时光场的非经典特性. 物理学报, 2006, 55(1): 192-196. doi: 10.7498/aps.55.192
    [6] 胡要花, 谭勇刚, 刘强. 强度相关耦合双Jaynes-Cummings模型中的纠缠和量子失谐. 物理学报, 2013, 62(7): 074202. doi: 10.7498/aps.62.074202
    [7] 郭 红, 赵 杰. 原子和光场线性熵的演化特性. 物理学报, 2007, 56(5): 2647-2651. doi: 10.7498/aps.56.2647
    [8] 谢双媛, 胡翔. 各向异性光子晶体中二能级原子和自发辐射场间的纠缠. 物理学报, 2010, 59(9): 6172-6177. doi: 10.7498/aps.59.6172
    [9] 李浩珍, 谢双媛, 许静平, 羊亚平. 结构库中二能级原子与自发辐射场间的纠缠演化. 物理学报, 2014, 63(12): 124201. doi: 10.7498/aps.63.124201
    [10] 陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛. 基于纠缠态的量子通信网络的量子信道建立速率模型. 物理学报, 2015, 64(4): 040301. doi: 10.7498/aps.64.040301
    [11] 单传家, 程维文, 刘堂昆, 黄燕霞, 李 宏. 具有Dzyaloshinskii-Moriya相互作用的一维随机量子XY模型中的纠缠特性. 物理学报, 2008, 57(5): 2687-2694. doi: 10.7498/aps.57.2687
    [12] 王彦辉, 夏云杰. 具有Dzyaloshinskii-Moriya相互作用的三量子比特海森伯模型中的对纠缠. 物理学报, 2009, 58(11): 7479-7485. doi: 10.7498/aps.58.7479
    [13] 于文健, 王继锁, 梁宝龙. 非线性相干态光场与二能级原子相互作用的量子特性. 物理学报, 2012, 61(6): 060301. doi: 10.7498/aps.61.060301
    [14] 许静平, 羊亚平. 场频率变化时原子与场的相互作用. 物理学报, 2004, 53(7): 2139-2144. doi: 10.7498/aps.53.2139
    [15] 贾 飞, 谢双媛, 羊亚平. 非旋波近似下频率变化的场与原子的相互作用. 物理学报, 2006, 55(11): 5835-5841. doi: 10.7498/aps.55.5835
    [16] 张婉娟, 王治国, 谢双媛, 羊亚平. 频率变化的压缩态光场与原子的相互作用. 物理学报, 2007, 56(4): 2168-2174. doi: 10.7498/aps.56.2168
    [17] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散. 物理学报, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [18] 王海霞, 殷雯, 王芳卫. 耦合量子点中的纠缠测量. 物理学报, 2010, 59(8): 5241-5245. doi: 10.7498/aps.59.5241
    [19] 周南润, 龚黎华, 刘三秋, 曾贵华. 基于纠缠的数据链路层量子通信协议. 物理学报, 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
    [20] 秦猛. 多量子位Heisenberg XX链中的杂质纠缠. 物理学报, 2010, 59(4): 2212-2216. doi: 10.7498/aps.59.2212
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3359
  • PDF下载量:  584
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-10
  • 修回日期:  2011-02-26
  • 刊出日期:  2011-11-15

k光子Jaynes-Cummings模型与运动原子相互作用中的熵交换及纠缠

  • 1. 哈尔滨工业大学物理系,哈尔滨 150001
    基金项目: 

    国家重点基础研究发展计划 (批准号:2011CB301801)和国家自然科学基金(批准号:10974039)资助的课题

摘要: 文章研究了k光子Jaynes-Cummings模型与运动原子相互作用中的熵相互关系及纠缠特性.发现原子与光场之间具有熵交换特性.讨论了原子运动、光子数k和场模结构等因素对原子与光场熵相互关系的影响.此外,讨论了原子与场系统熵交换与纠缠之间的关系.

English Abstract

参考文献 (77)

目录

    /

    返回文章
    返回