搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液体火箭有机凝胶喷雾液滴蒸发模型及仿真研究

何博 何浩波 丰松江 聂万胜

液体火箭有机凝胶喷雾液滴蒸发模型及仿真研究

何博, 何浩波, 丰松江, 聂万胜
PDF
导出引用
  • 凝胶推进剂虽然兼具有液体推进剂流量可控和固体推进剂长期可储存等优点, 但凝胶喷雾液滴蒸发燃烧问题却一直困扰着凝胶推进剂研制及燃烧室设计工作, 阻碍了凝胶推进剂实际工程应用.设计实现了凝胶单液滴蒸发燃烧实验系统, 通过某型有机凝胶偏二甲肼(UDMH)单液滴在四氧化二氮蒸气中的蒸发燃烧实验现象, 进一步深入分析了凝胶液滴蒸发燃烧机理.根据实验中凝胶单液滴在不同阶段的蒸发特性, 建立了有机凝胶喷雾液滴在胶凝剂膜形成、膨胀、破裂三个不同蒸发阶段的多组分蒸发模型, 采用初步选定的模型参数及物性参数对凝胶单液滴在高温气体环境中的蒸发全过程进行了仿真计算, 并与常规液体液滴的仿真结果进行了对比分析.结果表明,凝胶喷雾液滴表面胶凝剂含量在蒸发初期增加比较缓慢, 但在某临界时刻后的极短时间内迅速升高至形成胶凝剂膜的质量分数95%, 导致表面质量流率迅速下降至0,表面温度则快速上升至UDMH推进剂沸点.胶凝剂膜形成后, 液滴半径及表面UDMH蒸气质量分数出现了实验现象中凝胶液滴反复膨胀-破裂的震荡现象, 液滴表面温度维持在略高于沸点的某温度范围内,凝胶液滴内部的沸腾蒸发明显强于液体液滴表面稳态蒸发流率, 使得凝胶喷雾液滴生存时间小于常规液体液滴.
    • 基金项目: 国家重点基础研究发展计划(批准号: 6131020301)和国家自然科学基金(批准号: 51076168)资助的课题.
    [1]

    Rahimi S, Hasan D, Peretz A 2004 J. Propul. Power 20 93

    [2]

    Yasuhara W K, Finato S R, Olson A M 1993 2nd Annual AIAA SDIO Interceptor Technology Conference (Albuquerque: American Institute of Aeronautics and Astronautics)

    [3]

    Palaszewski B, Powell R 1994 J. Propul. Power 10 828

    [4]

    Feng S J, He B, Nie W S 2009 J. Rocket Propul. 35 1 (in Chinese) [丰松江, 何博, 聂万胜 2009 火箭推进 35 1]

    [5]

    Wang L, Li J, Yang Y J 2004 Acta Phys. Sin. 53 160 (in Chinese) [王理, 李黎, 杨亚江 2004 物理学报 53 160]

    [6]

    Han W, Shan S Q, Du Z G, Yu J, Yang C, Wu J 2009 Chem. Propel. & Polymeric Mater. 7 38 (in Chinese) [韩伟, 单世群, 杜宗罡, 于君, 杨超, 吴金 2009 化学推进剂与高分子材料 7 38]

    [7]

    Yang W D, Zhang M Z 2006 J. Rocket Propul. 32 12 (in Chinese) [杨伟东, 张蒙正 2006 火箭推进 32 12]

    [8]

    Zhang M Z, Yang W D, Wang M 2008 J. Propul. Technol. 29 22 (in Chinese) [张蒙正, 杨伟东, 王玫 2008 推进技术 29 22]

    [9]

    Solomon Y, Natan B, Cohen Y 2009 Combust Flame 156 261

    [10]

    Desyatkov A, Madlener K, Ciezki H K 2008 44th AIAA/ASME /SAE/ASEE Joint Propulsion Conference & Exhibit (Hartford: American Institute of Aeronautics and Astronautics)

    [11]

    Weiser V, Gläser S, Kelzenberg S, Eisenreich N, Roth E 2005 41st AIAA/ASME /SAE/ASEE Joint Propulsion Conference & Exhibit (Tucson: American Institute of Aeronautics and Astronautics)

    [12]

    Mueller D C 1997 Ph. D. Dissertation (Pennsylvania: The Pennsylvania State University)

    [13]

    Kunin A, Natan B, Greenberg J B 2009 Progress in Propulsion Physics 1 225

    [14]

    Zhang M Z 2010 J. Rocket Propul. 36 1 (in Chinese) [张蒙正 2010 火箭推进 36 1]

    [15]

    Catoire L, Chaumeix N, Pichon S, Paillard C 2006 J. Propul. Power 22 120

    [16]

    Li Y Q, He P 2008 Transactions of Csice 26 56 (in Chinese) [李云清, 何鹏 2008 内燃机学报 26 56]

    [17]

    Hardt S, Wondra F 2008 J. Comput. Phys. 227 5871

    [18]

    Arnold S L http: // www. gentoogeek. org / steves_world / hypergol_properties. pdf [2011-9-25]

    [19]

    He B, Xiao Q, Nie W S, Feng S J 2011 Journal of the Academy of Equipment Command & Technology 22 55 (in Chinese) [何博, 肖强, 聂万胜, 丰松江 2011 装备指挥技术学院学报 22 55]

    [20]

    He B, Nie W S, Feng S J, Li G Q 2011 Adv. Mater. Res. 297 2333

  • [1]

    Rahimi S, Hasan D, Peretz A 2004 J. Propul. Power 20 93

    [2]

    Yasuhara W K, Finato S R, Olson A M 1993 2nd Annual AIAA SDIO Interceptor Technology Conference (Albuquerque: American Institute of Aeronautics and Astronautics)

    [3]

    Palaszewski B, Powell R 1994 J. Propul. Power 10 828

    [4]

    Feng S J, He B, Nie W S 2009 J. Rocket Propul. 35 1 (in Chinese) [丰松江, 何博, 聂万胜 2009 火箭推进 35 1]

    [5]

    Wang L, Li J, Yang Y J 2004 Acta Phys. Sin. 53 160 (in Chinese) [王理, 李黎, 杨亚江 2004 物理学报 53 160]

    [6]

    Han W, Shan S Q, Du Z G, Yu J, Yang C, Wu J 2009 Chem. Propel. & Polymeric Mater. 7 38 (in Chinese) [韩伟, 单世群, 杜宗罡, 于君, 杨超, 吴金 2009 化学推进剂与高分子材料 7 38]

    [7]

    Yang W D, Zhang M Z 2006 J. Rocket Propul. 32 12 (in Chinese) [杨伟东, 张蒙正 2006 火箭推进 32 12]

    [8]

    Zhang M Z, Yang W D, Wang M 2008 J. Propul. Technol. 29 22 (in Chinese) [张蒙正, 杨伟东, 王玫 2008 推进技术 29 22]

    [9]

    Solomon Y, Natan B, Cohen Y 2009 Combust Flame 156 261

    [10]

    Desyatkov A, Madlener K, Ciezki H K 2008 44th AIAA/ASME /SAE/ASEE Joint Propulsion Conference & Exhibit (Hartford: American Institute of Aeronautics and Astronautics)

    [11]

    Weiser V, Gläser S, Kelzenberg S, Eisenreich N, Roth E 2005 41st AIAA/ASME /SAE/ASEE Joint Propulsion Conference & Exhibit (Tucson: American Institute of Aeronautics and Astronautics)

    [12]

    Mueller D C 1997 Ph. D. Dissertation (Pennsylvania: The Pennsylvania State University)

    [13]

    Kunin A, Natan B, Greenberg J B 2009 Progress in Propulsion Physics 1 225

    [14]

    Zhang M Z 2010 J. Rocket Propul. 36 1 (in Chinese) [张蒙正 2010 火箭推进 36 1]

    [15]

    Catoire L, Chaumeix N, Pichon S, Paillard C 2006 J. Propul. Power 22 120

    [16]

    Li Y Q, He P 2008 Transactions of Csice 26 56 (in Chinese) [李云清, 何鹏 2008 内燃机学报 26 56]

    [17]

    Hardt S, Wondra F 2008 J. Comput. Phys. 227 5871

    [18]

    Arnold S L http: // www. gentoogeek. org / steves_world / hypergol_properties. pdf [2011-9-25]

    [19]

    He B, Xiao Q, Nie W S, Feng S J 2011 Journal of the Academy of Equipment Command & Technology 22 55 (in Chinese) [何博, 肖强, 聂万胜, 丰松江 2011 装备指挥技术学院学报 22 55]

    [20]

    He B, Nie W S, Feng S J, Li G Q 2011 Adv. Mater. Res. 297 2333

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2985
  • PDF下载量:  544
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-27
  • 修回日期:  2011-12-06
  • 刊出日期:  2012-07-05

液体火箭有机凝胶喷雾液滴蒸发模型及仿真研究

  • 1. 解放军装备学院研究生一队, 北京 101416;
  • 2. 解放军装备学院航天装备系, 北京 101416
    基金项目: 

    国家重点基础研究发展计划(批准号: 6131020301)和国家自然科学基金(批准号: 51076168)资助的课题.

摘要: 凝胶推进剂虽然兼具有液体推进剂流量可控和固体推进剂长期可储存等优点, 但凝胶喷雾液滴蒸发燃烧问题却一直困扰着凝胶推进剂研制及燃烧室设计工作, 阻碍了凝胶推进剂实际工程应用.设计实现了凝胶单液滴蒸发燃烧实验系统, 通过某型有机凝胶偏二甲肼(UDMH)单液滴在四氧化二氮蒸气中的蒸发燃烧实验现象, 进一步深入分析了凝胶液滴蒸发燃烧机理.根据实验中凝胶单液滴在不同阶段的蒸发特性, 建立了有机凝胶喷雾液滴在胶凝剂膜形成、膨胀、破裂三个不同蒸发阶段的多组分蒸发模型, 采用初步选定的模型参数及物性参数对凝胶单液滴在高温气体环境中的蒸发全过程进行了仿真计算, 并与常规液体液滴的仿真结果进行了对比分析.结果表明,凝胶喷雾液滴表面胶凝剂含量在蒸发初期增加比较缓慢, 但在某临界时刻后的极短时间内迅速升高至形成胶凝剂膜的质量分数95%, 导致表面质量流率迅速下降至0,表面温度则快速上升至UDMH推进剂沸点.胶凝剂膜形成后, 液滴半径及表面UDMH蒸气质量分数出现了实验现象中凝胶液滴反复膨胀-破裂的震荡现象, 液滴表面温度维持在略高于沸点的某温度范围内,凝胶液滴内部的沸腾蒸发明显强于液体液滴表面稳态蒸发流率, 使得凝胶喷雾液滴生存时间小于常规液体液滴.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回