搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Chen系统在微弱信号检测中的应用

王梦蛟 曾以成 谢常清 朱高峰 唐淑红

Chen系统在微弱信号检测中的应用

王梦蛟, 曾以成, 谢常清, 朱高峰, 唐淑红
PDF
导出引用
导出核心图
  • 微弱谐波信号的灵敏检测具有重要的实际应用意义, 本文利用受控Chen系统来实现强噪声背景下的这种检测. 因动力系统可分解为慢变系统与快变系统的叠加, 这里用平均法对检测系统进行处理得到慢变系统, 并获取使系统由周期轨道突变为稳定平衡点的检测参数临界值. 通过调节检测参数, 观测系统状态变量的变化可判断待测信号是否存在. 仿真结果表明, 此方法可以准确检测出强噪声背景下的微弱谐波信号. 与目前其他基于混沌振子的检测方法相比, 该方案对噪声具有更强的免疫性, 而且可通过理论分析得出检测参数阈值的准确范围, 有利于在相关领域推广应用.
    • 基金项目: 国家自然科学基金(批准号: 60972147)和湖南人文科技学院青年基金(批准号: 2011QN14)资助的课题.
    [1]

    Wang G Y, Tao G L, Chen X, Lin J Y 1997 J. Sci. Instru. 18 209 (in Chinese) [王冠宇, 陶国良, 陈行, 林建亚 1997 仪器仪表学报 18 209]

    [2]

    Li Y, Yang B J 2003 Chin. Sci. Bull. 48 19 (in Chinese) [李月, 杨宝俊 2003 科学通报 48 19]

    [3]

    Li Y, Lu P, Yang B J, Zhao X P 2006 Acta Phys. Sin. 55 1672 (in Chinese) [李月, 路朋, 杨宝俊, 赵雪平 2006 物理学报 55 1672]

    [4]

    Chen L, Wang D S 2007 Acta Phys. Sin. 56 5098 (in Chinese) [谌龙, 王德石 2007 物理学报 56 5098]

    [5]

    Chen Z, Zeng Y C, Fu Z J 2008 Acta Phys. Sin. 57 46 (in Chinese) [陈争, 曾以成, 付志坚 2008 物理学报 57 46]

    [6]

    Xing H Y, Jin T L 2010 Acta Phys. Sin. 59 140 (in Chinese) [行鸿彦, 金天力 2010 物理学报 59 140]

    [7]

    Xu Y C, Yang C L, Qu X D 2010 Chin. Phys. B 19 030516

    [8]

    Jia H Y, Chen Z Q, Ye F 2011 Acta Phys. Sin. 60 010203 (in Chinese) [贾红艳, 陈增强, 叶菲 2011 物理学报 60 010203]

    [9]

    Feng C W, Cai L, Kang Q, Zhang L S 2011 Acta Phys. Sin. 60 030503 (in Chinese) [冯朝文, 蔡理, 康强, 张立森 2011 物理学报 60 030503]

    [10]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [11]

    Chen G, Ueta T 1999 Int. J. Bifur. Chaos 9 1465

    [12]

    Liu C X, Liu L, Liu K 2004 Chaos, Soliton and Fractals 22 1031

    [13]

    Tang L R, Li J, Fan B, Zhai M Y 2009 Acta Phys. Sin. 58 785 (in Chinese) [唐良瑞,李静,樊冰,翟明岳 2009 物理学报 58 785]

    [14]

    Yu F, Wang C H, Yin J W, Xu H 2012 Acta Phys. Sin. 61 020506 (in Chinese) [余飞, 王春华, 尹晋文, 徐浩 2012 物理学报 61 020506]

    [15]

    Ueta T, Chen G R 2000 Int. J. Bifur. Chaos 10 1917

    [16]

    Li Y, Yang B J 2004 Introduction of Detection Methods with Chaotic Oscillator (1st Ed.) (Beijing: Publishing House of Electronics Industry) pp49-51 (in Chinese) [李月, 杨宝俊 2004 混沌振子检测引论 (第1版) (北京: 电子工业出版社) 第49-51页]

    [17]

    Lima R, Pettini M 1990 Phys. Rev. A 41 726

    [18]

    Chacón R, Bejarano J D 1993 Phys. Rev. Lett. 71 3103

    [19]

    Soong C Y, Huang W T, Lin F P, Tzeng P Y 2004 Phys. Rev. E 70 0162111

    [20]

    Choe C U, Hohne K, Benner H, Kivshar Y S 2005 Phys. Rev. E 72 0362061

    [21]

    Wang M J, Zeng Y C, Chen G H, He J 2011 Acta Phys. Sin. 60 0105091 (in Chinese) [王梦蛟, 曾以成, 陈光辉, 贺娟 2011 物理学报 60 0105091]

    [22]

    Liu Y Z, Chen L Q 2001 Nonlinear Vibrations (1st Ed.) (Beijing: High Education Press) pp73-82 (in Chinese) [刘延柱, 陈立群 2001 非线性振动 (第1版) (北京: 高等教育出版社) 第73-82页]

    [23]

    Kivshar Yu S, Rodelsperger F, Benner H 1994 Phys. Rev. E 49 319

  • [1]

    Wang G Y, Tao G L, Chen X, Lin J Y 1997 J. Sci. Instru. 18 209 (in Chinese) [王冠宇, 陶国良, 陈行, 林建亚 1997 仪器仪表学报 18 209]

    [2]

    Li Y, Yang B J 2003 Chin. Sci. Bull. 48 19 (in Chinese) [李月, 杨宝俊 2003 科学通报 48 19]

    [3]

    Li Y, Lu P, Yang B J, Zhao X P 2006 Acta Phys. Sin. 55 1672 (in Chinese) [李月, 路朋, 杨宝俊, 赵雪平 2006 物理学报 55 1672]

    [4]

    Chen L, Wang D S 2007 Acta Phys. Sin. 56 5098 (in Chinese) [谌龙, 王德石 2007 物理学报 56 5098]

    [5]

    Chen Z, Zeng Y C, Fu Z J 2008 Acta Phys. Sin. 57 46 (in Chinese) [陈争, 曾以成, 付志坚 2008 物理学报 57 46]

    [6]

    Xing H Y, Jin T L 2010 Acta Phys. Sin. 59 140 (in Chinese) [行鸿彦, 金天力 2010 物理学报 59 140]

    [7]

    Xu Y C, Yang C L, Qu X D 2010 Chin. Phys. B 19 030516

    [8]

    Jia H Y, Chen Z Q, Ye F 2011 Acta Phys. Sin. 60 010203 (in Chinese) [贾红艳, 陈增强, 叶菲 2011 物理学报 60 010203]

    [9]

    Feng C W, Cai L, Kang Q, Zhang L S 2011 Acta Phys. Sin. 60 030503 (in Chinese) [冯朝文, 蔡理, 康强, 张立森 2011 物理学报 60 030503]

    [10]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [11]

    Chen G, Ueta T 1999 Int. J. Bifur. Chaos 9 1465

    [12]

    Liu C X, Liu L, Liu K 2004 Chaos, Soliton and Fractals 22 1031

    [13]

    Tang L R, Li J, Fan B, Zhai M Y 2009 Acta Phys. Sin. 58 785 (in Chinese) [唐良瑞,李静,樊冰,翟明岳 2009 物理学报 58 785]

    [14]

    Yu F, Wang C H, Yin J W, Xu H 2012 Acta Phys. Sin. 61 020506 (in Chinese) [余飞, 王春华, 尹晋文, 徐浩 2012 物理学报 61 020506]

    [15]

    Ueta T, Chen G R 2000 Int. J. Bifur. Chaos 10 1917

    [16]

    Li Y, Yang B J 2004 Introduction of Detection Methods with Chaotic Oscillator (1st Ed.) (Beijing: Publishing House of Electronics Industry) pp49-51 (in Chinese) [李月, 杨宝俊 2004 混沌振子检测引论 (第1版) (北京: 电子工业出版社) 第49-51页]

    [17]

    Lima R, Pettini M 1990 Phys. Rev. A 41 726

    [18]

    Chacón R, Bejarano J D 1993 Phys. Rev. Lett. 71 3103

    [19]

    Soong C Y, Huang W T, Lin F P, Tzeng P Y 2004 Phys. Rev. E 70 0162111

    [20]

    Choe C U, Hohne K, Benner H, Kivshar Y S 2005 Phys. Rev. E 72 0362061

    [21]

    Wang M J, Zeng Y C, Chen G H, He J 2011 Acta Phys. Sin. 60 0105091 (in Chinese) [王梦蛟, 曾以成, 陈光辉, 贺娟 2011 物理学报 60 0105091]

    [22]

    Liu Y Z, Chen L Q 2001 Nonlinear Vibrations (1st Ed.) (Beijing: High Education Press) pp73-82 (in Chinese) [刘延柱, 陈立群 2001 非线性振动 (第1版) (北京: 高等教育出版社) 第73-82页]

    [23]

    Kivshar Yu S, Rodelsperger F, Benner H 1994 Phys. Rev. E 49 319

  • [1] 蒋涛, 任金莲, 蒋戎戎, 陆伟刚. 基于局部加密纯无网格法非线性Cahn-Hilliard方程的模拟. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191829
    [2] 左富昌, 梅志武, 邓楼楼, 石永强, 贺盈波, 李连升, 周昊, 谢军, 张海力, 孙艳. 多层嵌套掠入射光学系统研制及在轨性能评价. 物理学报, 2020, 69(3): 030702. doi: 10.7498/aps.69.20191446
    [3] 庄志本, 李军, 刘静漪, 陈世强. 基于新的五维多环多翼超混沌系统的图像加密算法. 物理学报, 2020, 69(4): 040502. doi: 10.7498/aps.69.20191342
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1340
  • PDF下载量:  442
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-03
  • 修回日期:  2012-02-29
  • 刊出日期:  2012-09-20

Chen系统在微弱信号检测中的应用

  • 1. 湖南人文科技学院物理与信息工程系, 娄底 417000;
  • 2. 湘潭大学材料与光电物理学院, 湘潭 411105
    基金项目: 

    国家自然科学基金(批准号: 60972147)和湖南人文科技学院青年基金(批准号: 2011QN14)资助的课题.

摘要: 微弱谐波信号的灵敏检测具有重要的实际应用意义, 本文利用受控Chen系统来实现强噪声背景下的这种检测. 因动力系统可分解为慢变系统与快变系统的叠加, 这里用平均法对检测系统进行处理得到慢变系统, 并获取使系统由周期轨道突变为稳定平衡点的检测参数临界值. 通过调节检测参数, 观测系统状态变量的变化可判断待测信号是否存在. 仿真结果表明, 此方法可以准确检测出强噪声背景下的微弱谐波信号. 与目前其他基于混沌振子的检测方法相比, 该方案对噪声具有更强的免疫性, 而且可通过理论分析得出检测参数阈值的准确范围, 有利于在相关领域推广应用.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回