搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光-纳米丝靶相互作用过程中超热电子的加热机理研究

余金清 金晓林 周维民 李斌 谷渝秋

激光-纳米丝靶相互作用过程中超热电子的加热机理研究

余金清, 金晓林, 周维民, 李斌, 谷渝秋
PDF
导出引用
导出核心图
  • 超热电子的产生及其转化效率是快点火中的重要研究内容, 也是优化快点火中的激光等离子体参数、降低对点火脉冲能量需求等方面的重要依据. 纳米丝靶是提高激光-超热电子转化效率的一种有效途径, 为了进一步理解激光-纳米丝靶相互作用中超热电子的产生过程以及加热方式, 本文应用二维PIC(Flips2D)程序进行了相关的数值模拟. 通过研究电子在丝靶中的运动轨迹发现了远离互作用面的冷电子通过回流的方式向互作用面运动, 然后在互作用面附近与激光场相互作用被加热;研究了单个激光周期内电子密度和电子能量密度的变化, 确定了反向运动的电子的能量要远小于前向运动的电子能量, 确定了反向运动的电子大部分是冷电子的回流;通过研究场与电子空间位置随时间变化的关系, 确定了丝靶中超热电子的加热机理为J B机理.
    • 基金项目: 国家自然科学基金(批准号:10905009, 11174259, 11175165, 10975121)、 高等学校博士学科点专项科研基金(批准号:200806141034)、 重点实验室基金 (批准号: 9140c6802031003)和中央高校基本研究基金(批准号: ZYGX2010J052)资助的课题.
    [1]

    Cai H B, Mima K, Zhou W M, Jozaki T, Nagatomo H, Sunahara A, Mason R J 2009 Phys. Rev. Lett. 102 245001

    [2]

    Dong K G, Gu Y Q, Zhu B, Wu Y C, Cao L F, He Y L, Liu H J, Hong W, Zhou W M, Zhao Z Q, Jiao C Y, Wen X L, Zhang B H, Wang X F 2010 Acta Phys. Sin. 59 8733 (in Chinese) [董克攻, 谷渝秋, 朱 斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪 伟, 周维民, 赵宗青, 焦春晔, 温贤伦, 张保汉, 王晓方 2010 物理学报 59 8733]

    [3]

    Xu H, Sheng Z M, Zhang J 2007 Acta Phys. Sin. 56 968 (in Chinese) [徐 慧, 盛政明, 张 杰2007 物理学报 56 968 ]

    [4]

    Ma Y Y, Sheng Z M, Li Y T, Chang W W, Yuan X H, Chen M, Chen H C, Zheng J, Zhang J 2006 Phys. Plasmas 13 110702

    [5]

    Zhou C T, He X T 2007 Opt. Lett. 32 2444

    [6]

    Kodama R, Tanaka K, Sentoku Y, Matsushita T, Takahashi K, Kato Y, Fujita H, Kitagawa Y, Kanabe T, Yamanaka T, Mima K 2000 Phys. Rev. Lett. 84 674

    [7]

    Bastiani S, Rousse A, Geindre J P, Audebert P, Quoix C, Hamoniaux G, Antonetti A, Gauthier J C 1997 Phys. Rev. E. 56 7179

    [8]

    Ruhl H, Sentoku Y, Mima K, Tanaka K A, Kodama R 1999 Phys. Rev. Lett. 82 743

    [9]

    Li C K, Séguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J, Patel P K, Smalyuk V A, Sangster T C, Knauer J P 2006 Phys. Rev. Lett. 97 135003

    [10]

    Marshall F J, McKenty P W, Delettrez J A, Epstein R, Knauer J P, Smalyuk V A, Frenje J A, Li C K, Petrasso R D, Séguin F H, Mancini R C 2009 Phys. Rev. Lett. 102 185004

    [11]

    Li C K, Séguin F H, Frenje J A, Petrasso R D, Amendt P A, Town R P J, Landen O L, Rygg J R, Betti R, Knauer J P, Meyerhofer D D, Soures J M, Back C A, Kilkenny J D, Nikroo A 2009 Phys. Rev. Lett. 102 205001

    [12]

    Li C K, Séguin F H, Frenje J A, Manuel M, Casey D, Sinenian N, Petrasso R D, Amendt P A, Landen O L, Rygg J R, Town R P J, Betti R, Delettrez J, Knauer J P, Marshall F, Meyerhofer D D, Sangster T C, Shvarts D, Smalyuk V A, Soures J M, Back C A, Kilkenny J D, Nikroo A 2009 Phys. Plasmas 16 056304

    [13]

    Malka V, Fritzler S, Lefebvre E, d'Humieres E, Ferrand R, Grillon G, Albaret C, Meyroneinc S, Chambaret J P, Antonetti A, Hulin D 2004 Med. Phys. 311587

    [14]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626

    [15]

    Cao L H, Gu Y Q, Zhao Z Q, Cao L F, Huang W Z, Zhou W M, Cai H B, He X T, Yu W, Yu M Y 2010 Phys. Plasmas 17 103106

    [16]

    Cao L H, Gu Y Q, Zhao Z Q, Cao L F, Huang W Z, Zhou W M, He X T, Yu W, Yu M Y 2010 Phys. Plasmas 17 043103

    [17]

    Zhao Z Q, Cao L H, Cao L H, Wang J, Huang W Z, Jiang W, He Y L, Wu Y C, Zhu B, Dong K G, Ding Y K, Zhang B H, Gu Y Q, Yu M Y, and He X T 2010 Phys. Plasmas 17 123108

    [18]

    Ji Y L, Jiang G, Wu W D, Wang C Y, Gu Y Q, Tang Y J 2010 Appl. Phys. Lett. 96 041504

    [19]

    Zhou W M, Gu Y Q, Hong W, Zhao Z Q, Ding Y K, Zhang B H, Cai H B, Mima K 2010Laser and Particle Beams. 28 585

    [20]

    Zhou W M, Mima K, Nakamura T, Nagatomo H 2008 Phys. Plasmas 15 093107

    [21]

    Yu J Q, Zhou W M, Cao L H, Zhao Z Q, Cao L F, Shan L Q, Liu D X, Jin X L, Li B, Gu Y Q 2012 Appl. Phys. Lett. 100 204101

    [22]

    Yu J Q, Zhao Z Q, Jin X L, Wu F J, Yan Y H, Zhou W M, Cao L F, Li B, Gu Y Q 2012 Phys. Plasmas 19 053108

    [23]

    Atzeni S, Meyer-ter-vehn J 2004 The Physics of Inertial Fusion (Oxford Science Publications)

    [24]

    Gibbon P 2005 Short Pulse Laser Interactions with Matter (Imperical College Press)

  • [1]

    Cai H B, Mima K, Zhou W M, Jozaki T, Nagatomo H, Sunahara A, Mason R J 2009 Phys. Rev. Lett. 102 245001

    [2]

    Dong K G, Gu Y Q, Zhu B, Wu Y C, Cao L F, He Y L, Liu H J, Hong W, Zhou W M, Zhao Z Q, Jiao C Y, Wen X L, Zhang B H, Wang X F 2010 Acta Phys. Sin. 59 8733 (in Chinese) [董克攻, 谷渝秋, 朱 斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪 伟, 周维民, 赵宗青, 焦春晔, 温贤伦, 张保汉, 王晓方 2010 物理学报 59 8733]

    [3]

    Xu H, Sheng Z M, Zhang J 2007 Acta Phys. Sin. 56 968 (in Chinese) [徐 慧, 盛政明, 张 杰2007 物理学报 56 968 ]

    [4]

    Ma Y Y, Sheng Z M, Li Y T, Chang W W, Yuan X H, Chen M, Chen H C, Zheng J, Zhang J 2006 Phys. Plasmas 13 110702

    [5]

    Zhou C T, He X T 2007 Opt. Lett. 32 2444

    [6]

    Kodama R, Tanaka K, Sentoku Y, Matsushita T, Takahashi K, Kato Y, Fujita H, Kitagawa Y, Kanabe T, Yamanaka T, Mima K 2000 Phys. Rev. Lett. 84 674

    [7]

    Bastiani S, Rousse A, Geindre J P, Audebert P, Quoix C, Hamoniaux G, Antonetti A, Gauthier J C 1997 Phys. Rev. E. 56 7179

    [8]

    Ruhl H, Sentoku Y, Mima K, Tanaka K A, Kodama R 1999 Phys. Rev. Lett. 82 743

    [9]

    Li C K, Séguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J, Patel P K, Smalyuk V A, Sangster T C, Knauer J P 2006 Phys. Rev. Lett. 97 135003

    [10]

    Marshall F J, McKenty P W, Delettrez J A, Epstein R, Knauer J P, Smalyuk V A, Frenje J A, Li C K, Petrasso R D, Séguin F H, Mancini R C 2009 Phys. Rev. Lett. 102 185004

    [11]

    Li C K, Séguin F H, Frenje J A, Petrasso R D, Amendt P A, Town R P J, Landen O L, Rygg J R, Betti R, Knauer J P, Meyerhofer D D, Soures J M, Back C A, Kilkenny J D, Nikroo A 2009 Phys. Rev. Lett. 102 205001

    [12]

    Li C K, Séguin F H, Frenje J A, Manuel M, Casey D, Sinenian N, Petrasso R D, Amendt P A, Landen O L, Rygg J R, Town R P J, Betti R, Delettrez J, Knauer J P, Marshall F, Meyerhofer D D, Sangster T C, Shvarts D, Smalyuk V A, Soures J M, Back C A, Kilkenny J D, Nikroo A 2009 Phys. Plasmas 16 056304

    [13]

    Malka V, Fritzler S, Lefebvre E, d'Humieres E, Ferrand R, Grillon G, Albaret C, Meyroneinc S, Chambaret J P, Antonetti A, Hulin D 2004 Med. Phys. 311587

    [14]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626

    [15]

    Cao L H, Gu Y Q, Zhao Z Q, Cao L F, Huang W Z, Zhou W M, Cai H B, He X T, Yu W, Yu M Y 2010 Phys. Plasmas 17 103106

    [16]

    Cao L H, Gu Y Q, Zhao Z Q, Cao L F, Huang W Z, Zhou W M, He X T, Yu W, Yu M Y 2010 Phys. Plasmas 17 043103

    [17]

    Zhao Z Q, Cao L H, Cao L H, Wang J, Huang W Z, Jiang W, He Y L, Wu Y C, Zhu B, Dong K G, Ding Y K, Zhang B H, Gu Y Q, Yu M Y, and He X T 2010 Phys. Plasmas 17 123108

    [18]

    Ji Y L, Jiang G, Wu W D, Wang C Y, Gu Y Q, Tang Y J 2010 Appl. Phys. Lett. 96 041504

    [19]

    Zhou W M, Gu Y Q, Hong W, Zhao Z Q, Ding Y K, Zhang B H, Cai H B, Mima K 2010Laser and Particle Beams. 28 585

    [20]

    Zhou W M, Mima K, Nakamura T, Nagatomo H 2008 Phys. Plasmas 15 093107

    [21]

    Yu J Q, Zhou W M, Cao L H, Zhao Z Q, Cao L F, Shan L Q, Liu D X, Jin X L, Li B, Gu Y Q 2012 Appl. Phys. Lett. 100 204101

    [22]

    Yu J Q, Zhao Z Q, Jin X L, Wu F J, Yan Y H, Zhou W M, Cao L F, Li B, Gu Y Q 2012 Phys. Plasmas 19 053108

    [23]

    Atzeni S, Meyer-ter-vehn J 2004 The Physics of Inertial Fusion (Oxford Science Publications)

    [24]

    Gibbon P 2005 Short Pulse Laser Interactions with Matter (Imperical College Press)

  • [1] 温贤伦, 焦春晔, 何颖伶, 张双根, 黄文忠, 谷渝秋, 王光昶, 王向贤, 李玉同, 徐妙华, 于全芝, 王首钧, 张 杰, 远晓辉, 赵 卫. 超热电子产生的靶后相干渡越辐射光谱实验研究. 物理学报, 2006, 55(10): 5362-5367. doi: 10.7498/aps.55.5362
    [2] 陈 涛, 张 婷, 王光昶, 郑志坚, 谷渝秋. 利用渡越辐射研究超热电子在固体靶中的输运过程. 物理学报, 2007, 56(2): 982-987. doi: 10.7498/aps.56.982
    [3] 朱森昌, 张家泰, 祁兰英, 蒋小华, 陈家斌, 刘慎业, 郑志坚, 张保汉, 丁永坤, 李朝光, 王大海. “神光Ⅱ”基频光黑腔靶实验超热电子诊断. 物理学报, 2002, 51(9): 2063-2067. doi: 10.7498/aps.51.2063
    [4] 谭世杰, 郑 坚. 不同加热机制产生的超热电子的相干渡越辐射谐波研究. 物理学报, 2007, 56(12): 7132-7137. doi: 10.7498/aps.56.7132
    [5] 李 昆, 李玉同, 张 军, 远晓辉, 徐妙华, 王兆华, 张 杰. 不同偏振态下的飞秒激光脉冲与铝靶相互作用中超热电子的产生. 物理学报, 2006, 55(11): 5909-5916. doi: 10.7498/aps.55.5909
    [6] 杨向东, 谷渝秋, 郑志坚, 周维民, 温天舒, 淳于书泰, 焦春晔, 陈 豪, 蔡达锋. 飞秒激光-固体靶相互作用中超热电子能量分布的实验研究. 物理学报, 2005, 54(1): 186-191. doi: 10.7498/aps.54.186
    [7] 谷渝秋, 郑志坚, 周维民, 焦春晔, 温天舒, 淳于书泰, 蔡达锋. 飞秒激光-金属薄膜靶相互作用中靶前后超热电子能谱的比较. 物理学报, 2007, 56(1): 346-352. doi: 10.7498/aps.56.346
    [8] 蒋刚, 李三伟, 王传珂, 李志超, 李朝光, 赵学峰, 胡峰. 超热电子与金黑腔靶作用产生硬X射线的蒙特卡罗模拟. 物理学报, 2011, 60(7): 075203. doi: 10.7498/aps.60.075203
    [9] 李玉同, 徐妙华, 郑志远, 梁文锡, 于全芝, 张 翼, 王兆华, 令维军, 魏志义, 张 杰, 远晓辉, 赵 卫. 激光入射角对靶面方向超热电子发射的影响. 物理学报, 2006, 55(11): 5899-5904. doi: 10.7498/aps.55.5899
    [10] 郑志远, 李玉同, 徐妙华, 梁文锡, 于全芝, 张 翼, 王兆华, 魏志义, 张 杰, 远晓辉. 近相对论强度激光与薄膜靶相互作用中靶厚度对超热电子发射方向的影响. 物理学报, 2006, 55(4): 1894-1899. doi: 10.7498/aps.55.1894
    [11] 董晓刚, 盛政明, 陈 民, 张 杰. 强激光与固体靶作用产生的表面电子加速和辐射研究. 物理学报, 2008, 57(12): 7423-7429. doi: 10.7498/aps.57.7423
    [12] 陈正林, 张 杰. 对超热电子诱生的磁场分布的估算. 物理学报, 2000, 49(11): 2180-2185. doi: 10.7498/aps.49.2180
    [13] 陈正林, 张杰. 对超热电子诱生的磁场分布的估算. 物理学报, 2001, 50(4): 735-740. doi: 10.7498/aps.50.735
    [14] 陈 涛, 张 婷, 张建炜, 王光昶, 郑志坚, 谷渝秋, 温贤伦. 超热电子输运背向光辐射的实验研究. 物理学报, 2008, 57(8): 5117-5122. doi: 10.7498/aps.57.5117
    [15] 朱森昌, 张家泰, 祁兰英, 陈家斌, 蒋小华, 刘慎业, 郑志坚, 张保汉, 丁永坤, 李朝光, 王大海. “神光Ⅱ”首轮基频光驱动内爆实验超热电子诊断. 物理学报, 2002, 51(9): 2068-2073. doi: 10.7498/aps.51.2068
    [16] 徐妙华, 梁天骄, 张 杰. 利用韧致辐射诊断激光等离子体相互作用产生的超热电子. 物理学报, 2006, 55(5): 2357-2363. doi: 10.7498/aps.55.2357
    [17] 赵家瑞, 于全芝, 梁天骄, 陈黎明, 李玉同, 国承山. 利用光核反应对激光等离子体中超热电子温度诊断的理论研究. 物理学报, 2013, 62(7): 072501. doi: 10.7498/aps.62.072501
    [18] 彭晓昱, 张 杰, 金 展, 武慧春, 刘运全, 王兆华, 陈正林, 盛政明, 李玉同, 魏志义, 仲佳勇, 梁天骄. 超短脉冲激光与乙醇微滴相互作用中超热电子的双叶状角分布. 物理学报, 2004, 53(8): 2625-2632. doi: 10.7498/aps.53.2625
    [19] 陈正林, 张 杰, 陈黎明, 滕 浩, 董全力, 赵理曾, 魏志义. 金属靶和绝缘靶对飞秒激光吸收的比较. 物理学报, 2003, 52(7): 1672-1675. doi: 10.7498/aps.52.1672
    [20] 仲佳勇, 王怀斌, 彭练矛, 张军, 张杰, 陈清, 苍宇. 利用飞秒激光等离子体产生的超热电子进行衍射实验的可行性研究. 物理学报, 2002, 51(8): 1764-1767. doi: 10.7498/aps.51.1764
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1778
  • PDF下载量:  476
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-09
  • 修回日期:  2012-06-14
  • 刊出日期:  2012-11-20

激光-纳米丝靶相互作用过程中超热电子的加热机理研究

  • 1. 电子科技大学大功率微波电真空器件技术国防科技重点实验室, 成都 610054;
  • 2. 中国工程物理研究院激光聚变研究中心, 绵阳 621900
    基金项目: 

    国家自然科学基金(批准号:10905009, 11174259, 11175165, 10975121)、 高等学校博士学科点专项科研基金(批准号:200806141034)、 重点实验室基金 (批准号: 9140c6802031003)和中央高校基本研究基金(批准号: ZYGX2010J052)资助的课题.

摘要: 超热电子的产生及其转化效率是快点火中的重要研究内容, 也是优化快点火中的激光等离子体参数、降低对点火脉冲能量需求等方面的重要依据. 纳米丝靶是提高激光-超热电子转化效率的一种有效途径, 为了进一步理解激光-纳米丝靶相互作用中超热电子的产生过程以及加热方式, 本文应用二维PIC(Flips2D)程序进行了相关的数值模拟. 通过研究电子在丝靶中的运动轨迹发现了远离互作用面的冷电子通过回流的方式向互作用面运动, 然后在互作用面附近与激光场相互作用被加热;研究了单个激光周期内电子密度和电子能量密度的变化, 确定了反向运动的电子的能量要远小于前向运动的电子能量, 确定了反向运动的电子大部分是冷电子的回流;通过研究场与电子空间位置随时间变化的关系, 确定了丝靶中超热电子的加热机理为J B机理.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回