搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SmCo7纳米晶合金晶粒组织热稳定性的热力学分析与计算机模拟

张杨 宋晓艳 徐文武 张哲旭

SmCo7纳米晶合金晶粒组织热稳定性的热力学分析与计算机模拟

张杨, 宋晓艳, 徐文武, 张哲旭
PDF
导出引用
  • 推导出了单相纳米晶合金的晶界过剩体积与晶粒尺寸之间的定量关系, 建立了纳米晶合金的晶界热力学性质随温度和晶粒尺寸发生变化的确定性函数. 针对SmCo7纳米晶合金, 通过纳米晶界热力学函数计算和分析, 研究了单相纳米晶合金的晶粒组织热稳定性. 研究表明, 当纳米晶合金的晶粒尺寸小于对应于体系中晶界自由能最大值的临界晶粒尺寸时, 纳米晶组织处于相对稳定的热力学状态; 当纳米晶粒尺寸达到和超过临界尺寸时, 纳米晶组织将发生热力学失稳, 导致不连续的快速晶粒长大. 利用纳米晶合金热力学理论与元胞自动机算法相耦合的模型对SmCo7纳米晶合金在升温过程中的晶粒长大行为进行了计算机模拟, 模拟结果与纳米晶合金热力学模型的计算预测结果一致, 由此证实了关于纳米晶合金晶粒组织热稳定性的研究结论.
    • 基金项目: 国家自然科学基金(批准号: 50871001)和教育部博士点基金(批准号: 20070005010)资助的课题.
    [1]

    Sun J B, Han D, Cui C X, Yang W, Li L, Yang F, Yang L G 2010 Intermetallics 18 599

    [2]

    Li A H, Dong S Z, LiW2002 Acta Phys. Sin. 51 2320 (in Chinese) [李安华, 董生智, 李卫 2002 物理学报 51 2320]

    [3]

    Gutfleisch O, Müller K H, Khlopkov K, Wolf M, Yan A, Schäfer R, Gemming T, Schultz L 2006 Acta Mater. 54 997

    [4]

    Zhang C W, Li H, Dong J M, Wang Y J, Pan F C 2005 Acta Phys. Sin. 54 1814 (in Chinese) [张昌文, 李华, 董建敏, 王永娟, 潘凤春 2005 物理学报 54 1814]

    [5]

    Sun J B, Han D, Cui C X, Yang W, Li L, Yang F 2009 Acta Mater. 57 2845

    [6]

    Guo Y Q, Li W, Feng W C, Luo J, Liang J K, He Q J 2005 Appl. Phys. Lett. 86 192513

    [7]

    Wang W Q, Wang J L, Tang N, Bao F Q, Wu G H, Yang F M, Jin H M 2001 Acta Phys. Sin. 50 752 (in Chinese) [王文全, 王建立, 唐宁, 包富泉, 吴光恒, 杨伏明, 金汉民 2001 物理学报 50 752]

    [8]

    Song X Y, Zhang J X, Yue M, Li E D, Zeng H, Lu N D, Zhou M L, Zuo T Y 2006 Adv. Mater. 18 1210

    [9]

    Song X Y, Liu X M, Zhang J X 2006 J. Am. Ceram. Soc. 89 494

    [10]

    Zhang Z X, Song X Y, Xu W W 2010 Scr. Mater. 62 594

    [11]

    Gleiter H 2000 Acta Mater. 48 1

    [12]

    Feth H J 1990 Phys. Rev. Lett. 65 610

    [13]

    Wagner M 1992 Phys. Rev. B 45 635

    [14]

    Chattopadhyay P P, Nambissan P, Pabi S K, Manna I 2001 Phys. Rev. B 63 054107

    [15]

    Song X Y, Zhang J X, Li L M, Yang K Y, Liu G Q 2006 Acta Mater. 54 5541

    [16]

    XuWW, Song X Y, Lu N D, Huang C H 2010 Acta Mater. 58 396

    [17]

    Rose J H, Smith J R, Ferrante J 1983 Phys. Rev. B 28 1835

    [18]

    Rose J H, Smith J R, Guinea F, Ferrante J 1984 Phys. Rev. B 29 2936

    [19]

    Vinet P, Smith J R, Ferrante J, Rose J H 1987 Phys. Rev. B 35 1945

    [20]

    Vinet P, Ferrante J, Smith J R, Rose J H 1986 J. Phys. C 19 L467

    [21]

    Kittel C 1996 Introduction to Solid State Physics (New York: John Wiley & Sons)

    [22]

    XuWW, Song X Y, Li E D,Wei J, Zhang J X 2009 J. Appl. Phys. 105 104310

    [23]

    Song X Y, Gao J P, Zhang J X 2005 Acta Phys. Sin. 54 1313 (in Chinese) [宋晓艳, 高金萍, 张久兴 2005 物理学报 54 1313]

    [24]

    XuWW, Song X Y, Zhang Z X 2010 Appl. Phys. Lett. 97 181911

    [25]

    Song X Y, Liu G Q, He Y Z 1998 Prog. Nat. Sci. 8 92

    [26]

    Song X Y, Liu G Q 1998 Scr. Mater. 38 1691

    [27]

    Song X Y, Liu G Q 1999 J. Mater. Sci. 34 2433

    [28]

    Xu W W, Song X Y, Li E D, Wei J, Li L M 2009 Acta Phys. Sin. 58 3280 (in Chinese) [徐文武, 宋晓艳, 李尔东, 魏君, 李凌梅 2009 物理学报 58 3280]

  • [1]

    Sun J B, Han D, Cui C X, Yang W, Li L, Yang F, Yang L G 2010 Intermetallics 18 599

    [2]

    Li A H, Dong S Z, LiW2002 Acta Phys. Sin. 51 2320 (in Chinese) [李安华, 董生智, 李卫 2002 物理学报 51 2320]

    [3]

    Gutfleisch O, Müller K H, Khlopkov K, Wolf M, Yan A, Schäfer R, Gemming T, Schultz L 2006 Acta Mater. 54 997

    [4]

    Zhang C W, Li H, Dong J M, Wang Y J, Pan F C 2005 Acta Phys. Sin. 54 1814 (in Chinese) [张昌文, 李华, 董建敏, 王永娟, 潘凤春 2005 物理学报 54 1814]

    [5]

    Sun J B, Han D, Cui C X, Yang W, Li L, Yang F 2009 Acta Mater. 57 2845

    [6]

    Guo Y Q, Li W, Feng W C, Luo J, Liang J K, He Q J 2005 Appl. Phys. Lett. 86 192513

    [7]

    Wang W Q, Wang J L, Tang N, Bao F Q, Wu G H, Yang F M, Jin H M 2001 Acta Phys. Sin. 50 752 (in Chinese) [王文全, 王建立, 唐宁, 包富泉, 吴光恒, 杨伏明, 金汉民 2001 物理学报 50 752]

    [8]

    Song X Y, Zhang J X, Yue M, Li E D, Zeng H, Lu N D, Zhou M L, Zuo T Y 2006 Adv. Mater. 18 1210

    [9]

    Song X Y, Liu X M, Zhang J X 2006 J. Am. Ceram. Soc. 89 494

    [10]

    Zhang Z X, Song X Y, Xu W W 2010 Scr. Mater. 62 594

    [11]

    Gleiter H 2000 Acta Mater. 48 1

    [12]

    Feth H J 1990 Phys. Rev. Lett. 65 610

    [13]

    Wagner M 1992 Phys. Rev. B 45 635

    [14]

    Chattopadhyay P P, Nambissan P, Pabi S K, Manna I 2001 Phys. Rev. B 63 054107

    [15]

    Song X Y, Zhang J X, Li L M, Yang K Y, Liu G Q 2006 Acta Mater. 54 5541

    [16]

    XuWW, Song X Y, Lu N D, Huang C H 2010 Acta Mater. 58 396

    [17]

    Rose J H, Smith J R, Ferrante J 1983 Phys. Rev. B 28 1835

    [18]

    Rose J H, Smith J R, Guinea F, Ferrante J 1984 Phys. Rev. B 29 2936

    [19]

    Vinet P, Smith J R, Ferrante J, Rose J H 1987 Phys. Rev. B 35 1945

    [20]

    Vinet P, Ferrante J, Smith J R, Rose J H 1986 J. Phys. C 19 L467

    [21]

    Kittel C 1996 Introduction to Solid State Physics (New York: John Wiley & Sons)

    [22]

    XuWW, Song X Y, Li E D,Wei J, Zhang J X 2009 J. Appl. Phys. 105 104310

    [23]

    Song X Y, Gao J P, Zhang J X 2005 Acta Phys. Sin. 54 1313 (in Chinese) [宋晓艳, 高金萍, 张久兴 2005 物理学报 54 1313]

    [24]

    XuWW, Song X Y, Zhang Z X 2010 Appl. Phys. Lett. 97 181911

    [25]

    Song X Y, Liu G Q, He Y Z 1998 Prog. Nat. Sci. 8 92

    [26]

    Song X Y, Liu G Q 1998 Scr. Mater. 38 1691

    [27]

    Song X Y, Liu G Q 1999 J. Mater. Sci. 34 2433

    [28]

    Xu W W, Song X Y, Li E D, Wei J, Li L M 2009 Acta Phys. Sin. 58 3280 (in Chinese) [徐文武, 宋晓艳, 李尔东, 魏君, 李凌梅 2009 物理学报 58 3280]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2239
  • PDF下载量:  454
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-08
  • 修回日期:  2011-04-14
  • 刊出日期:  2012-01-05

SmCo7纳米晶合金晶粒组织热稳定性的热力学分析与计算机模拟

  • 1. 北京工业大学材料科学与工程学院新型功能材料教育部重点实验室, 北京 100124
    基金项目: 

    国家自然科学基金(批准号: 50871001)和教育部博士点基金(批准号: 20070005010)资助的课题.

摘要: 推导出了单相纳米晶合金的晶界过剩体积与晶粒尺寸之间的定量关系, 建立了纳米晶合金的晶界热力学性质随温度和晶粒尺寸发生变化的确定性函数. 针对SmCo7纳米晶合金, 通过纳米晶界热力学函数计算和分析, 研究了单相纳米晶合金的晶粒组织热稳定性. 研究表明, 当纳米晶合金的晶粒尺寸小于对应于体系中晶界自由能最大值的临界晶粒尺寸时, 纳米晶组织处于相对稳定的热力学状态; 当纳米晶粒尺寸达到和超过临界尺寸时, 纳米晶组织将发生热力学失稳, 导致不连续的快速晶粒长大. 利用纳米晶合金热力学理论与元胞自动机算法相耦合的模型对SmCo7纳米晶合金在升温过程中的晶粒长大行为进行了计算机模拟, 模拟结果与纳米晶合金热力学模型的计算预测结果一致, 由此证实了关于纳米晶合金晶粒组织热稳定性的研究结论.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回