搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究稀土掺杂ZnO结构的光电性质

李泓霖 张仲 吕英波 黄金昭 张英 刘如喜

第一性原理研究稀土掺杂ZnO结构的光电性质

李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜
PDF
导出引用
导出核心图
  • 基于密度泛函理论的第一性原理平面波超软赝势方法,运用Castep计算分析了Er, Gd两种稀土元素掺杂的ZnO结构, 对本征ZnO和掺杂晶体的能带结构、态密度以及光学性质进行了分析对比. 由掺杂前后的结果分析发现,稀土掺杂的ZnO结构引入了由稀土原子贡献的导电载流子, 增强了体系的电导率, 费米能级上移进入导带. 研究表明由于稀土元素的掺入, ZnO结构在费米能级附近出现了杂质能带, 这是由稀土的4f态电子所形成. 同时, 纯净ZnO与Er-ZnO, Gd-ZnO和(Er, Gd)-ZnO的介电函数虚部有明显的差异. 在光学性质上, 掺杂ZnO在可见光区的吸收系数和反射率都比纯净ZnO高, 能量损失峰出现红移现象.
    • 基金项目: 山东省科技发展计划(批准号:2009GG2003028)和国家自然科学基金青年科学基金(批准号:11104114)资助的课题.
    [1]

    Zhou Z, Komori T, Ayukawa T, Yukawa H, Morinaga M, Koizumi A, Takeda Y 2005 Appl. Phys. Lett. 87 091109

    [2]

    Lang J, Han Q, Yang J, Li C 2010 J. Appl. Phys. 107 074302

    [3]

    Tang Z K, Wong G K L, Yu P 1998 Appl. Phys. Lett. 72 3270

    [4]

    Zhang J K, Deng S H, Jin H, Liu Y L 2007 Acta Phys. Sin. 56 5371 (in Chinese) [张金奎, 邓胜华, 金慧, 刘悦林 2007 物理学报 56 5371]

    [5]

    Mujdat C, Yasein C, Saliha I 2007 Phys. Stat. Sol. C 4 1337

    [6]

    Deng B, Sun H Q, Guo Z Y, Gao X Q 2010 Acta Phys. Sin. 59 1212 (in Chinese) [邓贝, 孙慧卿, 郭志友, 高小奇 2010 物理学报 59 1212]

    [7]

    Zhou C J, Kang J Y 2006 Chin. J. Lumin. 27 917 (in Chinese) [周昌杰, 康俊勇 2006 发光学报 27 917]

    [8]

    Xia C H, Zhou M, Han X Y, Yin P F 2011 Mater. Rev. 25 11

    [9]

    Huang L M, Rosa A L, Ahuja R 2006 Phys. Rev. B 75 75206

    [10]

    Pei G Q, Xia C T, Wu B, Wang T 2008 Comput. Mater. Sci. 43 489

    [11]

    Liu Y, Tian T, Wang B 2008 J. Appl. Phys. 103 056104

    [12]

    Chen J T, Wang J, Zhang F, Zhang G A, Wu Z G, Yan P X 2008 J. Cryst. Growth 310 2627

    [13]

    Liu H, Yang J, Hua Z, Zhang, Yang L, Xiao L 2010 Appl. Surf. Sci. 256 4162

    [14]

    Jang Y R, Yoo K H, Ahn J S, Kim C, Park S M 2011 Appl. Surf. Sci. 257 2822

    [15]

    Bai Y F, Wang Y X, Yang K, Zhang X R, Song Y L, Wang C H 2008 Opt. Commun. 218 5448

    [16]

    Lang J H, Li X, Yang J H, Yang L L 2011 Appl. Surf. Sci. 257 9574

    [17]

    Minami T, Yamamoto T, Miyata T 2000 Thin Solid Films 366 63

    [18]

    Kaur R, Singh A V, Mehra R M 2004 Mater. Sci. Poland 22 201

    [19]

    Liu L, Yu P Y, Ma Z, Mao S S 2008 Phys. Rev. Lett. 100 127203

    [20]

    Seo S Y, Lee S, Park H D, Shin N, Sohn K S 2002 J. Appl. Phys. 92 5248

    [21]

    Bae J S, Jeong J H, Yi S S, Park J C 2003 Appl. Phys. Lett. 82 3629

    [22]

    Garcia-Murillo A, Luyer C L, Garapon C 2002 Opt. Mater. 19 161

    [23]

    Keiji W, Masatoshi S, Hideaki T 1999 J. Electroanal Chem. 473 250

    [24]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Guan L, Li Q, Zhao Q X, Guo J X, Zhou Y 2009 Acta Phys. Sin. 58 5634 (in Chinese) [关丽, 李强, 赵庆勋, 郭建新, 周阳 2009 物理学报 58 5634]

    [27]

    Deng S H, Duan M Y, Xu M, He L 2011 Physica B 406 2314

    [28]

    Shen X C 1992 The Optical Properties of Semiconductor (Beijing: Science Press) p24 (in Chinese) [沈学础 1992 半导体光学性质(北京: 科学出版社) 第24页]

    [29]

    Duan M Y, Xu M, Zhou H P, Shen Y B, Chen Q Y, Ding Y C, Zhu W J 2007 Acta Phys. Sin. 56 5359 (in Chinese) [段满益, 徐明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军 2007 物理学报 56 5359]

    [30]

    Zhang X D, Guo M L, Li W X, Liu C L 2008 J. Appl. Phys. 103 063721

    [31]

    Lan W, Liu Y P, Zhang M, Wang B, Yan H, Wang Y Y 2007 Mater. Lett. 61 2262

    [32]

    Anomalous E B 1954 Phys. Rev. 93 632

    [33]

    Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T, Ye Z Z, Zeng Y J, Zhang Y Z, Zhu L P, He H P, Zhao B H 2007 J. Appl. Phys. 101 083705

  • [1]

    Zhou Z, Komori T, Ayukawa T, Yukawa H, Morinaga M, Koizumi A, Takeda Y 2005 Appl. Phys. Lett. 87 091109

    [2]

    Lang J, Han Q, Yang J, Li C 2010 J. Appl. Phys. 107 074302

    [3]

    Tang Z K, Wong G K L, Yu P 1998 Appl. Phys. Lett. 72 3270

    [4]

    Zhang J K, Deng S H, Jin H, Liu Y L 2007 Acta Phys. Sin. 56 5371 (in Chinese) [张金奎, 邓胜华, 金慧, 刘悦林 2007 物理学报 56 5371]

    [5]

    Mujdat C, Yasein C, Saliha I 2007 Phys. Stat. Sol. C 4 1337

    [6]

    Deng B, Sun H Q, Guo Z Y, Gao X Q 2010 Acta Phys. Sin. 59 1212 (in Chinese) [邓贝, 孙慧卿, 郭志友, 高小奇 2010 物理学报 59 1212]

    [7]

    Zhou C J, Kang J Y 2006 Chin. J. Lumin. 27 917 (in Chinese) [周昌杰, 康俊勇 2006 发光学报 27 917]

    [8]

    Xia C H, Zhou M, Han X Y, Yin P F 2011 Mater. Rev. 25 11

    [9]

    Huang L M, Rosa A L, Ahuja R 2006 Phys. Rev. B 75 75206

    [10]

    Pei G Q, Xia C T, Wu B, Wang T 2008 Comput. Mater. Sci. 43 489

    [11]

    Liu Y, Tian T, Wang B 2008 J. Appl. Phys. 103 056104

    [12]

    Chen J T, Wang J, Zhang F, Zhang G A, Wu Z G, Yan P X 2008 J. Cryst. Growth 310 2627

    [13]

    Liu H, Yang J, Hua Z, Zhang, Yang L, Xiao L 2010 Appl. Surf. Sci. 256 4162

    [14]

    Jang Y R, Yoo K H, Ahn J S, Kim C, Park S M 2011 Appl. Surf. Sci. 257 2822

    [15]

    Bai Y F, Wang Y X, Yang K, Zhang X R, Song Y L, Wang C H 2008 Opt. Commun. 218 5448

    [16]

    Lang J H, Li X, Yang J H, Yang L L 2011 Appl. Surf. Sci. 257 9574

    [17]

    Minami T, Yamamoto T, Miyata T 2000 Thin Solid Films 366 63

    [18]

    Kaur R, Singh A V, Mehra R M 2004 Mater. Sci. Poland 22 201

    [19]

    Liu L, Yu P Y, Ma Z, Mao S S 2008 Phys. Rev. Lett. 100 127203

    [20]

    Seo S Y, Lee S, Park H D, Shin N, Sohn K S 2002 J. Appl. Phys. 92 5248

    [21]

    Bae J S, Jeong J H, Yi S S, Park J C 2003 Appl. Phys. Lett. 82 3629

    [22]

    Garcia-Murillo A, Luyer C L, Garapon C 2002 Opt. Mater. 19 161

    [23]

    Keiji W, Masatoshi S, Hideaki T 1999 J. Electroanal Chem. 473 250

    [24]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Guan L, Li Q, Zhao Q X, Guo J X, Zhou Y 2009 Acta Phys. Sin. 58 5634 (in Chinese) [关丽, 李强, 赵庆勋, 郭建新, 周阳 2009 物理学报 58 5634]

    [27]

    Deng S H, Duan M Y, Xu M, He L 2011 Physica B 406 2314

    [28]

    Shen X C 1992 The Optical Properties of Semiconductor (Beijing: Science Press) p24 (in Chinese) [沈学础 1992 半导体光学性质(北京: 科学出版社) 第24页]

    [29]

    Duan M Y, Xu M, Zhou H P, Shen Y B, Chen Q Y, Ding Y C, Zhu W J 2007 Acta Phys. Sin. 56 5359 (in Chinese) [段满益, 徐明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军 2007 物理学报 56 5359]

    [30]

    Zhang X D, Guo M L, Li W X, Liu C L 2008 J. Appl. Phys. 103 063721

    [31]

    Lan W, Liu Y P, Zhang M, Wang B, Yan H, Wang Y Y 2007 Mater. Lett. 61 2262

    [32]

    Anomalous E B 1954 Phys. Rev. 93 632

    [33]

    Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T, Ye Z Z, Zeng Y J, Zhang Y Z, Zhu L P, He H P, Zhao B H 2007 J. Appl. Phys. 101 083705

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2646
  • PDF下载量:  2034
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-09
  • 修回日期:  2012-09-26
  • 刊出日期:  2013-02-05

第一性原理研究稀土掺杂ZnO结构的光电性质

  • 1. 济南大学物理科学与技术学院, 济南 250022;
  • 2. 山东大学威海分校空间科学与物理学院, 威海 264209
    基金项目: 

    山东省科技发展计划(批准号:2009GG2003028)和国家自然科学基金青年科学基金(批准号:11104114)资助的课题.

摘要: 基于密度泛函理论的第一性原理平面波超软赝势方法,运用Castep计算分析了Er, Gd两种稀土元素掺杂的ZnO结构, 对本征ZnO和掺杂晶体的能带结构、态密度以及光学性质进行了分析对比. 由掺杂前后的结果分析发现,稀土掺杂的ZnO结构引入了由稀土原子贡献的导电载流子, 增强了体系的电导率, 费米能级上移进入导带. 研究表明由于稀土元素的掺入, ZnO结构在费米能级附近出现了杂质能带, 这是由稀土的4f态电子所形成. 同时, 纯净ZnO与Er-ZnO, Gd-ZnO和(Er, Gd)-ZnO的介电函数虚部有明显的差异. 在光学性质上, 掺杂ZnO在可见光区的吸收系数和反射率都比纯净ZnO高, 能量损失峰出现红移现象.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回