搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米压印技术制备表面光子晶体LED的研究

彭静 徐智谋 吴小峰 孙堂友

引用本文:
Citation:

纳米压印技术制备表面光子晶体LED的研究

彭静, 徐智谋, 吴小峰, 孙堂友

A study of LED with surface photonic crystal structure fabricated by the nanoimprint lithography

Peng Jing, Xu Zhi-Mou, Wu Xiao-Feng, Sun Tang-You
PDF
导出引用
  • 利用表面光子晶体能大幅提高发光二极管(LED)的外量子效率, 但如何制备大面积的纳米光子晶体是该研究方向的主要难点之一. 本文基于纳米压印技术在氮化镓基发光二极管(GaN-LED)表面制作孔状二维光子晶体. 通过以金属和聚合物双层掩膜干法刻蚀法, 得到了很好的光子晶体图形转移效果. 最终在LED的p-GaN层表面获得了大面积光子晶体, 周期为450 nm, 纳米孔直径为240 nm. 器件测试结果显示, 有表面光子晶体的LED比没有光子晶体的LED, 光致发光强度峰值提高到了7.2倍.
    Surface photonic crystal (PC) structure can improve the external quantum efficiency of light-emitting diode (LED). However, it is very difficult to fabricate large area and uniform nanometer photonic crystal structure in this field. In this paper, two-dimensional PC with hole-like structure is successfully transferred to the surface of gallium nitride LED (GaN-LED) by the mental-polymer double-layer mask dry etching technology combined with the nanoimprint lithography. The large area nanometer PC patterns with pore diameter of 240 nm and period of 450 nm are obtained. The results show that the photoluminescence peak intensity of LED with the PC structure is 7.2 times higher than that of the conventional LED.
    • 基金项目: 国家自然科学基金(批准号: 61076042, 60607006)、国家重大科学仪器专项(批准号: 2011YQ16000205)和国家高技术研究发展计划(批准号: 2011AA03A106)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076042, 60607006), the Special Project on Development of National Key Scientific Instruments and Equipment of China (Grant No. 2011YQ16000205) and the National High Technology Research and Development Program of China (2011AA03A106).
    [1]

    Borodisky M, Yablonovitch E 1997 Proc. SPIE 3002 119

    [2]

    Xiong W 2009 M. S. Dissertation (Wuhan: Huazhong University of Science and Technoligy) (in Chinese) [熊慰 2009 硕士学位论文(武汉:华中科技大学)]

    [3]

    Lee K S, Kang E J, Park S J 2003 J. Appl. Phys. 93 9383

    [4]

    Wierer J J 2001 Appl. Phys. Lett. 78 3379

    [5]

    Kim J K, Gessmann T, Luo H, Schubert E F 2004 Appl. Phys. Lett. 84 4508

    [6]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [7]

    Fan S, Villeneuve P R 1997 Phys. Rev. Lett. 78 3294

    [8]

    Li X L, 2009 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University) (in Chinese) [李小丽 2009 博士学位论文(上海: 上海交通大学)]

    [9]

    Ichikawa H, Baba T 2004 Appl. Phys. Lett. 84 457

    [10]

    Kim D H 2005 Appl. Phys. Lett. 87 3508

    [11]

    Long D H, Hwang I K, Ryu S W 2009 IEEE J. Sele. Top. Quan. Electro. 15 1257

    [12]

    Lee J, Kim D H, Kim J, Jeon H 2009 Cur. Appl. Phys. 9 633

    [13]

    Liu W, Wang L 2010 China Communications 7 134

    [14]

    Jung G Y 2006 Nano. Lett. 6 351

  • [1]

    Borodisky M, Yablonovitch E 1997 Proc. SPIE 3002 119

    [2]

    Xiong W 2009 M. S. Dissertation (Wuhan: Huazhong University of Science and Technoligy) (in Chinese) [熊慰 2009 硕士学位论文(武汉:华中科技大学)]

    [3]

    Lee K S, Kang E J, Park S J 2003 J. Appl. Phys. 93 9383

    [4]

    Wierer J J 2001 Appl. Phys. Lett. 78 3379

    [5]

    Kim J K, Gessmann T, Luo H, Schubert E F 2004 Appl. Phys. Lett. 84 4508

    [6]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [7]

    Fan S, Villeneuve P R 1997 Phys. Rev. Lett. 78 3294

    [8]

    Li X L, 2009 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University) (in Chinese) [李小丽 2009 博士学位论文(上海: 上海交通大学)]

    [9]

    Ichikawa H, Baba T 2004 Appl. Phys. Lett. 84 457

    [10]

    Kim D H 2005 Appl. Phys. Lett. 87 3508

    [11]

    Long D H, Hwang I K, Ryu S W 2009 IEEE J. Sele. Top. Quan. Electro. 15 1257

    [12]

    Lee J, Kim D H, Kim J, Jeon H 2009 Cur. Appl. Phys. 9 633

    [13]

    Liu W, Wang L 2010 China Communications 7 134

    [14]

    Jung G Y 2006 Nano. Lett. 6 351

计量
  • 文章访问数:  6738
  • PDF下载量:  1339
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-15
  • 修回日期:  2012-08-24
  • 刊出日期:  2013-02-05

/

返回文章
返回