搜索

x
中国物理学会期刊

四能级双V型原子系统中考虑自发辐射相干的无粒子数反转激光

CSTR: 32037.14.aps.62.164207

Lasing without inversion with considering spontaneously generated coherence

CSTR: 32037.14.aps.62.164207
PDF
导出引用
  • 提出了一个由两个弱探测场和两个强耦合场驱动的四能级双V型原子系统, 研究发现在四波混频共振条件下, 两探测场均可被放大而无须粒子数反转. 值得注意的是, 由于所选择的激发态为超精细结构的两个近能级, 这里必须考虑自发辐射相干效应的影响. 与不考虑自发辐射相干相比, 同样参数条件下探测场的增益得到大幅度提高.而且, 探测场增益对相位非常敏感, 即增益-吸收线型受相位周期性调制, 同时也受两个偶极矩之间夹角θ制约. 此外还分析了相干抽运场 (强耦合场)的失谐对增益谱线产生的影响.

     

    We provide a four-level double-V type atomic system driven by two week probe fields and two strong coupling laser beams. In the condition of resonant four-wave mixing, the two probe fields can be amplified without population inversion. Due to the fact that the two excited states are close- lying upper levels of hyperfine structure, the spontaneously generated coherence (SGC) effect must be considered. Interestingly, the amplitude of gain is sufficiently enhanced with the same parameters as those in the case without considering SGC. In addition, we find that the probe gain is sensitive to the phase of two laser fields which interact with the same lower level. To be more specific, the amplitude of gain is modulated by the phase periodically but restricted by θ (the angle between two induced dipole moments). At the same time, we also analyze the influence of the coherence pumping (strong coupling fields) detuning.

     

    目录

    /

    返回文章
    返回