搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳柱阵列通道中生物分子等效淌度的宏观输运理论分析

李子瑞 廖宁波 周余庆 薛伟 刘谋斌

纳柱阵列通道中生物分子等效淌度的宏观输运理论分析

李子瑞, 廖宁波, 周余庆, 薛伟, 刘谋斌
PDF
导出引用
  • 各向异性生物分子或带电布朗粒子在周期性孔隙结构运动的分析在生物医学、水处理、环境工程等无数领域具有非常重要的意义. 本文基于宏观输运理论计算粒子在周期性微纳阵列结构中等效输运 参数, 预测分离结果. 首先通过引入构型熵及有效电荷等参数, 建立各向异性生物分子在纳米级受限环境下的等效布朗粒子模型, 然后应用宏观输运理论和数值方法计算分子的等效淌度. 以小分子DNA 片段在周期性纳柱阵列通道中电泳迁移为例, 证明当通道空隙接近或小于分子尺寸时, 熵受限对分子的等效迁移速度有重要的影响, 是实现生物分子分离的主要机理. 因为熵受限的作用随着外电场的增强而减低,所以在较低电场强度条件下, 分子淌度差别较大, 对应分离效果较佳.
    • 基金项目: 国家自然科学基金(批准号: 11372229)资助的课题.
    [1]

    Han J, Fu J, Schoch R B 2008 Lab. Chip. 8 23

    [2]

    Fu J, Mao P, Han J 2005 Appl. Phys. Lett. 87 263902

    [3]

    Fu J, Yoo J, Han J 2006 Phys. Rev. Lett. 97 018103

    [4]

    Fu J, Schoch R B, Stevens A L, Tannenbaum S R, Han J 2007 Nat. Nano. 2 121

    [5]

    Mao P, Han J 2009 Lab. Chip. 9 586

    [6]

    Han J, Turner S W, Craighead H G 1999 Phys. Rev. Lett. 83 1688

    [7]

    Han J, Craighead H G 2000 Science 288 1026

    [8]

    Dorfman K D 2010 Rev. Mod. Phys. 82 2903

    [9]

    Stein D, Kruithof M, Dekker C 2004 Phys. Rev. Lett. 93 035901

    [10]

    Gao L, Wu J, Gao D, Wu J 2007 Appl. Phys. Lett. 91 113902

    [11]

    Wu J, Zhao S L, Gao L, Wu J, Gao D 2011 Lab. Chip 11 4036

    [12]

    Wu J, Zhao S L, Gao L, Wu J, Gao D 2013 J. Phys. Chem. B 117 2267

    [13]

    Fang Z L, Fang Q 2001 Mod. Sci. Instrum. 4 3 (in Chinese) [方肇伦, 方群 2001 现代科学仪器 4 3]

    [14]

    Lin B C, Qin J H 2005 Chinese J. Chromatogr. 23 456 (in Chinese) [林炳承, 秦建华 2005 色谱 23 456]

    [15]

    Qin J H, Feng Y S,Lin B C 2003 Chinese J. Chromatogr. 21 464 (in Chinese) [秦建华, 冯应升, 林炳承 2003 色谱 21 464]

    [16]

    Zhang Z X, Shen Z, Zhao H, Li B, Song S P, Hu J, Lin B C, Li M Q 2005 Acta. Chim. Sin. 63 1743 (in Chinese) [张志祥, 沈铮, 赵辉, 李宾, 宋世平, 胡钧, 林炳承, 李民乾 2005 化学学报 63 1743]

    [17]

    Zhou X M, Li D Z, Shen Z, Liu W, Li G R, Lin B C 2005 Chem. J. Chinese. U. 26 1252 (in Chinese) [周小棉, 李大志, 沈铮, 刘伟, 李桂茹, 林炳承 2005 高等学校化学学报 26 1252]

    [18]

    Yao B, He Q H, Du W B, Shi X T, Fang Q 2009 Chinese J. Chromatogr. 27 662 (in Chinese) [姚波, 何巧红, 杜文斌, 石晓彤, 方群 2009 色谱 27 662]

    [19]

    Rodbard D, Chrambach A 1970 Proc. Nat. Acad. Sci. 65 970

    [20]

    Zhang J L, Jiang J G, Jiang X G, Huang Y N 2007 Acta Phys. Sin. 56 5088 (in Chiniese) [张晋鲁, 蒋建国, 蒋新革, 黄以能 2007 物理学报 56 5088]

    [21]

    Jiang S C, Zhang L X, Xia A C, Chen H P, Cheng J 2010 Chin. Phys. B 19 018106

    [22]

    Cao X Z, Merlitz H, Sommer J U, Wu C X 2012 Chin. Phys. B 21 118202

    [23]

    Fayad G N,Hadjiconstantinou N G 2010 Microfluid. Nanofluid. 8 521

    [24]

    Li H X, Qiang HF 2009 Adv. Mech. 39 165 (in Chinese) [李红霞, 强洪夫 2009 力学进展 39 165]

    [25]

    Zhou L W, Liu M B, Chang J Z 2012 Acta Polym. Sin. 7 720 (in Chinese) [周吕文, 刘谋斌, 常建忠 2012 高分子学报 7 720]

    [26]

    Chen S, Shang Z, Zhao Y, Wang D 2010 J. Tongji Univ. (Nat. Sci.) 38 767 (in Chinese) [陈硕, 尚智, 赵岩, 王丹 2010 同济大学学报 (自然科学版) 38 767]

    [27]

    Xu S F, Wang J G 2013 Acta Phys. Sin. 62 124701 (in Chinese) [许少锋, 汪久根 2013 物理学报 62 124701]

    [28]

    Wang Y, Xie Y J, Yang H Y, Zhang X Y 2010 Chinese J. Chem. Phys. 3 313 (in Chinese) [王瑶, 谢永军, 杨海洋, 张兴元 2010 化学物理学报 3 313]

    [29]

    Xie Y J, Shi Q W, Wang X P, Zhu P P, Yang H Y, Zhang X Y 2005 Acta Phys. Sin. 53 2796 (in Chinese) [谢永军, 石勤伟, 王晓平, 朱平平, 杨海洋, 张兴元 2005 物理学报 53 2796]

    [30]

    Su J Y, Zhang L X 2008 Chin. Phys. B 17 3115

    [31]

    Xu L M, He L L, Cheng J 2011 J. Zhejiang Univ. (Sci. Edn.) 5 009 (in Chinese) [徐李梅, 何林李, 成军 2011 浙江大学学报 (理学版) 5 009]

    [32]

    Allison S A, Li Z, Reed D, Stellwagen N C 2002 Electrophoresis 23 2678

    [33]

    Gao H L, Zhou K L, Wang C, Li S J, Zhang H, Xia X H 2012 Electrochemistry 18 229 (in Chinese) [高红丽, 周凯琳, 王琛, 李素娟, 章慧, 夏兴华 2012 电化学 18 229]

    [34]

    Li Z R, Liu G R, Chen Y Z, Wang J S, Bow H, Cheng Y, Han J 2008 Electrophoresis 29 329

    [35]

    Li Z R, Liu G R, Han J, Cheng Y, Chen Y Z, Wang J S, Hadjiconstantinou N G 2009 Phys. Rev. E 80 041911

    [36]

    Brenner H, Edwards D 1993 Macrotransport Processes (Boston MA: Butterworth Heinemann) p1

    [37]

    Dorfman K D, Brenner H 2002 Phys. Rev. E 65 021103

    [38]

    Yariv E, Dorfman K D 2007 Phys. Fluids. 19 037101

    [39]

    Dorfman K D 2010 Chem. Eng. Commu. 197 39

    [40]

    Wang X, Drazer G 2009 Phys. Fluids. 21 102002

    [41]

    Bernate J A, Drazer G 2011 J. Colloid. Interface. Sci. 356 341

    [42]

    Li Z R, Liu G R, Han J, Chen Y Z, Wang J S, Hadjiconstantinou N G 2009 Anal. Bioanal. Chem. 34 427

    [43]

    Berg H C 1993 Random walks in biology (Princeton: Princeton University Press) p1

    [44]

    Rubenstein M, Colby R H 2003 Polymer Physics (New York: Oxford University Press) p1

    [45]

    Stellwagen N C, Gelfi C, Righetti P G 1997 Biopolymers 42 687

    [46]

    Tirado M M, Martinez C L, Garcia de la Torre J J 1984 Chem. Phys. 81 2047

    [47]

    Li Z R, Liu G R, Hadjiconstantinou N G, Han J, Wang J S, Chen Y Z 2011 Electrophoresis 32 506

  • [1]

    Han J, Fu J, Schoch R B 2008 Lab. Chip. 8 23

    [2]

    Fu J, Mao P, Han J 2005 Appl. Phys. Lett. 87 263902

    [3]

    Fu J, Yoo J, Han J 2006 Phys. Rev. Lett. 97 018103

    [4]

    Fu J, Schoch R B, Stevens A L, Tannenbaum S R, Han J 2007 Nat. Nano. 2 121

    [5]

    Mao P, Han J 2009 Lab. Chip. 9 586

    [6]

    Han J, Turner S W, Craighead H G 1999 Phys. Rev. Lett. 83 1688

    [7]

    Han J, Craighead H G 2000 Science 288 1026

    [8]

    Dorfman K D 2010 Rev. Mod. Phys. 82 2903

    [9]

    Stein D, Kruithof M, Dekker C 2004 Phys. Rev. Lett. 93 035901

    [10]

    Gao L, Wu J, Gao D, Wu J 2007 Appl. Phys. Lett. 91 113902

    [11]

    Wu J, Zhao S L, Gao L, Wu J, Gao D 2011 Lab. Chip 11 4036

    [12]

    Wu J, Zhao S L, Gao L, Wu J, Gao D 2013 J. Phys. Chem. B 117 2267

    [13]

    Fang Z L, Fang Q 2001 Mod. Sci. Instrum. 4 3 (in Chinese) [方肇伦, 方群 2001 现代科学仪器 4 3]

    [14]

    Lin B C, Qin J H 2005 Chinese J. Chromatogr. 23 456 (in Chinese) [林炳承, 秦建华 2005 色谱 23 456]

    [15]

    Qin J H, Feng Y S,Lin B C 2003 Chinese J. Chromatogr. 21 464 (in Chinese) [秦建华, 冯应升, 林炳承 2003 色谱 21 464]

    [16]

    Zhang Z X, Shen Z, Zhao H, Li B, Song S P, Hu J, Lin B C, Li M Q 2005 Acta. Chim. Sin. 63 1743 (in Chinese) [张志祥, 沈铮, 赵辉, 李宾, 宋世平, 胡钧, 林炳承, 李民乾 2005 化学学报 63 1743]

    [17]

    Zhou X M, Li D Z, Shen Z, Liu W, Li G R, Lin B C 2005 Chem. J. Chinese. U. 26 1252 (in Chinese) [周小棉, 李大志, 沈铮, 刘伟, 李桂茹, 林炳承 2005 高等学校化学学报 26 1252]

    [18]

    Yao B, He Q H, Du W B, Shi X T, Fang Q 2009 Chinese J. Chromatogr. 27 662 (in Chinese) [姚波, 何巧红, 杜文斌, 石晓彤, 方群 2009 色谱 27 662]

    [19]

    Rodbard D, Chrambach A 1970 Proc. Nat. Acad. Sci. 65 970

    [20]

    Zhang J L, Jiang J G, Jiang X G, Huang Y N 2007 Acta Phys. Sin. 56 5088 (in Chiniese) [张晋鲁, 蒋建国, 蒋新革, 黄以能 2007 物理学报 56 5088]

    [21]

    Jiang S C, Zhang L X, Xia A C, Chen H P, Cheng J 2010 Chin. Phys. B 19 018106

    [22]

    Cao X Z, Merlitz H, Sommer J U, Wu C X 2012 Chin. Phys. B 21 118202

    [23]

    Fayad G N,Hadjiconstantinou N G 2010 Microfluid. Nanofluid. 8 521

    [24]

    Li H X, Qiang HF 2009 Adv. Mech. 39 165 (in Chinese) [李红霞, 强洪夫 2009 力学进展 39 165]

    [25]

    Zhou L W, Liu M B, Chang J Z 2012 Acta Polym. Sin. 7 720 (in Chinese) [周吕文, 刘谋斌, 常建忠 2012 高分子学报 7 720]

    [26]

    Chen S, Shang Z, Zhao Y, Wang D 2010 J. Tongji Univ. (Nat. Sci.) 38 767 (in Chinese) [陈硕, 尚智, 赵岩, 王丹 2010 同济大学学报 (自然科学版) 38 767]

    [27]

    Xu S F, Wang J G 2013 Acta Phys. Sin. 62 124701 (in Chinese) [许少锋, 汪久根 2013 物理学报 62 124701]

    [28]

    Wang Y, Xie Y J, Yang H Y, Zhang X Y 2010 Chinese J. Chem. Phys. 3 313 (in Chinese) [王瑶, 谢永军, 杨海洋, 张兴元 2010 化学物理学报 3 313]

    [29]

    Xie Y J, Shi Q W, Wang X P, Zhu P P, Yang H Y, Zhang X Y 2005 Acta Phys. Sin. 53 2796 (in Chinese) [谢永军, 石勤伟, 王晓平, 朱平平, 杨海洋, 张兴元 2005 物理学报 53 2796]

    [30]

    Su J Y, Zhang L X 2008 Chin. Phys. B 17 3115

    [31]

    Xu L M, He L L, Cheng J 2011 J. Zhejiang Univ. (Sci. Edn.) 5 009 (in Chinese) [徐李梅, 何林李, 成军 2011 浙江大学学报 (理学版) 5 009]

    [32]

    Allison S A, Li Z, Reed D, Stellwagen N C 2002 Electrophoresis 23 2678

    [33]

    Gao H L, Zhou K L, Wang C, Li S J, Zhang H, Xia X H 2012 Electrochemistry 18 229 (in Chinese) [高红丽, 周凯琳, 王琛, 李素娟, 章慧, 夏兴华 2012 电化学 18 229]

    [34]

    Li Z R, Liu G R, Chen Y Z, Wang J S, Bow H, Cheng Y, Han J 2008 Electrophoresis 29 329

    [35]

    Li Z R, Liu G R, Han J, Cheng Y, Chen Y Z, Wang J S, Hadjiconstantinou N G 2009 Phys. Rev. E 80 041911

    [36]

    Brenner H, Edwards D 1993 Macrotransport Processes (Boston MA: Butterworth Heinemann) p1

    [37]

    Dorfman K D, Brenner H 2002 Phys. Rev. E 65 021103

    [38]

    Yariv E, Dorfman K D 2007 Phys. Fluids. 19 037101

    [39]

    Dorfman K D 2010 Chem. Eng. Commu. 197 39

    [40]

    Wang X, Drazer G 2009 Phys. Fluids. 21 102002

    [41]

    Bernate J A, Drazer G 2011 J. Colloid. Interface. Sci. 356 341

    [42]

    Li Z R, Liu G R, Han J, Chen Y Z, Wang J S, Hadjiconstantinou N G 2009 Anal. Bioanal. Chem. 34 427

    [43]

    Berg H C 1993 Random walks in biology (Princeton: Princeton University Press) p1

    [44]

    Rubenstein M, Colby R H 2003 Polymer Physics (New York: Oxford University Press) p1

    [45]

    Stellwagen N C, Gelfi C, Righetti P G 1997 Biopolymers 42 687

    [46]

    Tirado M M, Martinez C L, Garcia de la Torre J J 1984 Chem. Phys. 81 2047

    [47]

    Li Z R, Liu G R, Hadjiconstantinou N G, Han J, Wang J S, Chen Y Z 2011 Electrophoresis 32 506

  • [1] 蹇君, 雷娇, 樊群超, 范志祥, 马杰, 付佳, 李会东, 徐勇根. NO分子宏观气体热力学性质的理论研究. 物理学报, 2020, 69(5): 053301. doi: 10.7498/aps.69.20191723
    [2] 苏进, 欧阳洁, 王晓东. 棒状分子聚合物溶液的微宏观数值模拟. 物理学报, 2010, 59(5): 3362-3369. doi: 10.7498/aps.59.3362
    [3] 梁瑞冰, 孙琪真, 沃江海, 刘德明. 微纳尺度光纤布拉格光栅折射率传感的理论研究. 物理学报, 2011, 60(10): 104221. doi: 10.7498/aps.60.104221
    [4] 李文飞, 张建, 王骏, 王炜. 生物大分子多尺度理论和计算方法. 物理学报, 2015, 64(9): 098701. doi: 10.7498/aps.64.098701
    [5] 李志杰, 田鸣, 贺连龙. AlN纳米线宏观阵列的制备. 物理学报, 2011, 60(9): 098101. doi: 10.7498/aps.60.098101
    [6] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究. 物理学报, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [7] 徐国亮, 张琳, 路战胜, 刘培, 刘玉芳. 特殊构型Si2N2分子团簇电致激发特性的密度泛函理论研究. 物理学报, 2014, 63(10): 103101. doi: 10.7498/aps.63.103101
    [8] 梁燚然, 梁清. 带电纳米颗粒与相分离的带电生物膜之间相互作用的分子模拟. 物理学报, 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [9] 阎世英, 马美仲, 朱正和. B2H6分子的几何构型. 物理学报, 2005, 54(7): 3106-3110. doi: 10.7498/aps.54.3106
    [10] 刘世元, 顾华勇, 张传维, 沈宏伟. 基于修正等效介质理论的微纳深沟槽结构反射率快速算法研究. 物理学报, 2008, 57(9): 5996-6001. doi: 10.7498/aps.57.5996
    [11] 牛秀明, 齐元华. 分子结点电子输运性质的理论研究. 物理学报, 2008, 57(11): 6926-6931. doi: 10.7498/aps.57.6926
    [12] 通关藤结构组. 通关藤晶Ⅰ的分子结构、晶体结构与绝对构型. 物理学报, 1980, 29(8): 1014-1022. doi: 10.7498/aps.29.1014
    [13] 饶子和, 万柱礼, 梁栋材. 钩吻素溴氢酸盐的晶体结构及其分子的绝对构型. 物理学报, 1982, 31(4): 547-553. doi: 10.7498/aps.31.547
    [14] 李强, 邵水军, 李世顺. 复杂型腔充模过程中分子构型演化的数值模拟. 物理学报, 2016, 65(24): 244601. doi: 10.7498/aps.65.244601
    [15] 范海福, 林政炯. 南氨酸高氯酸盐的晶体结构及分子的绝对构型. 物理学报, 1965, 21(2): 253-262. doi: 10.7498/aps.21.253
    [16] 王 磊, 胡慧芳, 韦建卫, 曾 晖, 于滢潆, 王志勇, 张丽娟. 有机分子二苯乙烯系列衍生物第一超极化率的理论研究. 物理学报, 2008, 57(5): 2987-2993. doi: 10.7498/aps.57.2987
    [17] 赵佩, 郑继明, 陈有为, 郭平, 任兆玉. 单壁碳纳米管吸附氧分子的电子输运性质理论研究. 物理学报, 2011, 60(6): 068501. doi: 10.7498/aps.60.068501
    [18] 柳福提, 程艳, 陈向荣, 程晓洪, 曾志强. Au-Si60-Au分子结电子输运性质的理论计算. 物理学报, 2014, 63(17): 177304. doi: 10.7498/aps.63.177304
    [19] 付成花. 微纳粒子光学散射分析. 物理学报, 2017, 66(9): 097301. doi: 10.7498/aps.66.097301
    [20] 刘备, 胡伟鹏, 邹孝, 丁亚军, 钱盛友. 基于变分模态分解与多尺度排列熵的生物组织变性识别. 物理学报, 2019, 68(2): 028702. doi: 10.7498/aps.68.20181772
  • 引用本文:
    Citation:
计量
  • 文章访问数:  966
  • PDF下载量:  530
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-22
  • 修回日期:  2013-07-19
  • 刊出日期:  2013-11-05

纳柱阵列通道中生物分子等效淌度的宏观输运理论分析

  • 1. 温州大学机电工程学院, 温州 325035;
  • 2. 中国科学院力学研究所, 北京 100190
    基金项目: 

    国家自然科学基金(批准号: 11372229)资助的课题.

摘要: 各向异性生物分子或带电布朗粒子在周期性孔隙结构运动的分析在生物医学、水处理、环境工程等无数领域具有非常重要的意义. 本文基于宏观输运理论计算粒子在周期性微纳阵列结构中等效输运 参数, 预测分离结果. 首先通过引入构型熵及有效电荷等参数, 建立各向异性生物分子在纳米级受限环境下的等效布朗粒子模型, 然后应用宏观输运理论和数值方法计算分子的等效淌度. 以小分子DNA 片段在周期性纳柱阵列通道中电泳迁移为例, 证明当通道空隙接近或小于分子尺寸时, 熵受限对分子的等效迁移速度有重要的影响, 是实现生物分子分离的主要机理. 因为熵受限的作用随着外电场的增强而减低,所以在较低电场强度条件下, 分子淌度差别较大, 对应分离效果较佳.

English Abstract

参考文献 (47)

目录

    /

    返回文章
    返回