搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究

廖建 谢召起 袁健美 黄艳平 毛宇亮

3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究

廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮
PDF
导出引用
导出核心图
  • 基于密度泛函理论的第一性原理计算,研究了横截面为五边形和六边形的核壳结构硅纳米线的过渡金属Co原子替代掺杂. 通过比较形成能发现,核心位置掺杂、壳层单链掺杂以及外壳层全替代掺杂的硅纳米线都具有稳定性,其中核心位置掺杂结构的稳定性最高. 掺杂体系均呈现金属性,随着掺杂浓度的增加,电导通道数增加. Co原子掺杂的硅纳米线呈现铁磁性,具有磁矩. Bader电荷分析表明,电荷从Si原子转移至过渡金属Co原子. 与自由态时过渡金属Co原子的磁矩相比,体系中Co原子的磁矩有所降低,这主要是由Co原子4s轨道向3d/4p轨道的电荷转移以及4s,3d,4p的上自旋电子转移至下自旋导致的.
    • 基金项目: 国家自然科学基金(批准号:11374251,11101346)、湖南省教育厅科学研究基金(批准号:12K046,YB2011B029)和湖南省自然科学基金(批准号:12JJ9002)资助的课题.
    [1]

    Morales A M, Lieber C M 1998 Science 279 208

    [2]

    Tang Y H, Zhang Y F, Lee C S, Wang N, Yu D P, Bello I, Lee S T 1998 Mater. Res. Soc. Symp. Proc. 526 73

    [3]

    Zhang J H, Gu F, Liu Q J, Gu B, Li M 2010 Acta Phys. Sin. 59 4226 (in Chinese) [张加宏, 顾芳, 刘清惓, 顾斌, 李敏 2010 物理学报 59 4226]

    [4]

    Liang W H, Ding X C, Chu L Z, Deng Z C, Guo J X, Wu Z H, Wang Y L 2010 Acta Phys. Sin. 59 8071 (in Chinese) [梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙 2010 物理学报 59 8071]

    [5]

    Liang L, Xu Q F, Hu M L, Su H, Xiang G H, Zhou L B 2013 Acta Phys. Sin. 62 037301 (in Chinese) [梁磊, 徐琴芳, 忽满利, 孙浩, 向光华, 周利斌 2013 物理学报 62 037301]

    [6]

    Wang M L, Zhang C X, Wu Z L, Jing X L, Xu H J 2014 Chin. Phys. B 23 067802

    [7]

    Liu Y, Liang P, Shu H B, Cao D, Dong Q M, Wang L 2014 Chin. Phys. B 23 067304

    [8]

    Xing Y J, Yu D P, Xi Z H, Xue Z Q 2002 Chin. Phys. 11 1047

    [9]

    Holmes J D, Johnston K P, Doty R C 2000 Science 287 1471

    [10]

    Cui Y, Duan X F, Hu J T 2000 Phys. Chem. 104 5213

    [11]

    Baumer A, Stutzmann M S 2004 Appl. Phys. Lett. 85 943

    [12]

    Li D Y, Wu Y Y, Shi L 2003 Appl. Phys. Lett. 83 2934

    [13]

    Durgun E, Akman N, Ciraci S 2008 Phys. Rev. B 78 195116

    [14]

    Durgun E, Çakır D, Akman N 2007 Phys. Rev. Lett. 99 256806

    [15]

    Sen P, Glseren O, Yildirim T 2002 Phys. Rev. B 65 235433

    [16]

    Menon M, Andriotis N, Froudakis G 2002 Nano Lett. 2 301

    [17]

    Nishio K, Ozaki T, Morishita T 2010 Phys. Rev. B 81 115444

    [18]

    Dumitrică T, Hua M, Yakobson B I 2004 Phys. Rev. B 70 241303

    [19]

    Singh A K, Briere T M, Kumar V, Kawazoe Y 2003 Phys. Rev. Lett. 91 146802

    [20]

    Jang Y R, Jo C, Lee J I 2005 IEEE Trans. Magn. 41 3118

    [21]

    Berkdemir C, Gleeren O 2009 Phys. Rev. B 80 115334

    [22]

    Vila L, Vincent P, Pra L D D, Pirio G, Minoux E, Gangloff L, Demoustier-Champagne S, Sarazin N, Ferain E, Legras R, Piraux L, Legagneux P 2004 Nano Lett. 4 521

    [23]

    Zhao L Y, Liao K, Pynenburg M, Wong L, Heinig N, Thomas J P, Leung K T 2013 ACS Appl. Mater. Inter. 5 2410

    [24]

    Tsai C I, Yeh P H, Wang C Y, Wu H W, Chen U S, Liu M Y, Wu W W, Wang Z L 2009 Cryst. Growth Des. 9 4514

    [25]

    Seo K, Varadwaj K S K, Mohanty P, Lee S, Jo Y, Jung M H, Kim J, Kim B 2007 Nano Lett. 7 1240

    [26]

    Seo K, Lee S, Yoon H, In J, Varadwaj K S K, Jo Y, Jung M H, Kim J, Kim B 2009 ACS Nano 3 1145

    [27]

    Kresse G, Hafener J 1994 Phys. Rev. B 49 14251

    [28]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [29]

    Payne M C, Teter M P, Arias T A, Allan D C, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [30]

    Kresse G, Hafener J 1994 Phys. Rev. B 49 14251

    [31]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [33]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [34]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [35]

    Menthfessel M, Paxton A T 1989 Phys. Rev. B 40 3616

    [36]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

  • [1]

    Morales A M, Lieber C M 1998 Science 279 208

    [2]

    Tang Y H, Zhang Y F, Lee C S, Wang N, Yu D P, Bello I, Lee S T 1998 Mater. Res. Soc. Symp. Proc. 526 73

    [3]

    Zhang J H, Gu F, Liu Q J, Gu B, Li M 2010 Acta Phys. Sin. 59 4226 (in Chinese) [张加宏, 顾芳, 刘清惓, 顾斌, 李敏 2010 物理学报 59 4226]

    [4]

    Liang W H, Ding X C, Chu L Z, Deng Z C, Guo J X, Wu Z H, Wang Y L 2010 Acta Phys. Sin. 59 8071 (in Chinese) [梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙 2010 物理学报 59 8071]

    [5]

    Liang L, Xu Q F, Hu M L, Su H, Xiang G H, Zhou L B 2013 Acta Phys. Sin. 62 037301 (in Chinese) [梁磊, 徐琴芳, 忽满利, 孙浩, 向光华, 周利斌 2013 物理学报 62 037301]

    [6]

    Wang M L, Zhang C X, Wu Z L, Jing X L, Xu H J 2014 Chin. Phys. B 23 067802

    [7]

    Liu Y, Liang P, Shu H B, Cao D, Dong Q M, Wang L 2014 Chin. Phys. B 23 067304

    [8]

    Xing Y J, Yu D P, Xi Z H, Xue Z Q 2002 Chin. Phys. 11 1047

    [9]

    Holmes J D, Johnston K P, Doty R C 2000 Science 287 1471

    [10]

    Cui Y, Duan X F, Hu J T 2000 Phys. Chem. 104 5213

    [11]

    Baumer A, Stutzmann M S 2004 Appl. Phys. Lett. 85 943

    [12]

    Li D Y, Wu Y Y, Shi L 2003 Appl. Phys. Lett. 83 2934

    [13]

    Durgun E, Akman N, Ciraci S 2008 Phys. Rev. B 78 195116

    [14]

    Durgun E, Çakır D, Akman N 2007 Phys. Rev. Lett. 99 256806

    [15]

    Sen P, Glseren O, Yildirim T 2002 Phys. Rev. B 65 235433

    [16]

    Menon M, Andriotis N, Froudakis G 2002 Nano Lett. 2 301

    [17]

    Nishio K, Ozaki T, Morishita T 2010 Phys. Rev. B 81 115444

    [18]

    Dumitrică T, Hua M, Yakobson B I 2004 Phys. Rev. B 70 241303

    [19]

    Singh A K, Briere T M, Kumar V, Kawazoe Y 2003 Phys. Rev. Lett. 91 146802

    [20]

    Jang Y R, Jo C, Lee J I 2005 IEEE Trans. Magn. 41 3118

    [21]

    Berkdemir C, Gleeren O 2009 Phys. Rev. B 80 115334

    [22]

    Vila L, Vincent P, Pra L D D, Pirio G, Minoux E, Gangloff L, Demoustier-Champagne S, Sarazin N, Ferain E, Legras R, Piraux L, Legagneux P 2004 Nano Lett. 4 521

    [23]

    Zhao L Y, Liao K, Pynenburg M, Wong L, Heinig N, Thomas J P, Leung K T 2013 ACS Appl. Mater. Inter. 5 2410

    [24]

    Tsai C I, Yeh P H, Wang C Y, Wu H W, Chen U S, Liu M Y, Wu W W, Wang Z L 2009 Cryst. Growth Des. 9 4514

    [25]

    Seo K, Varadwaj K S K, Mohanty P, Lee S, Jo Y, Jung M H, Kim J, Kim B 2007 Nano Lett. 7 1240

    [26]

    Seo K, Lee S, Yoon H, In J, Varadwaj K S K, Jo Y, Jung M H, Kim J, Kim B 2009 ACS Nano 3 1145

    [27]

    Kresse G, Hafener J 1994 Phys. Rev. B 49 14251

    [28]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [29]

    Payne M C, Teter M P, Arias T A, Allan D C, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [30]

    Kresse G, Hafener J 1994 Phys. Rev. B 49 14251

    [31]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [33]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [34]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [35]

    Menthfessel M, Paxton A T 1989 Phys. Rev. B 40 3616

    [36]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

  • [1] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [2] 梁培, 刘阳, 王乐, 吴珂, 董前民, 李晓艳. 表面悬挂键导致硅纳米线掺杂失效机理的第一性原理研究. 物理学报, 2012, 61(15): 153102. doi: 10.7498/aps.61.153102
    [3] 范立华, 曹觉先. 过渡族金属掺杂Al(111)表面对氢分子催化分解的影响. 物理学报, 2015, 64(3): 038801. doi: 10.7498/aps.64.038801
    [4] 曾永志, 朱梓忠, 林秋宝, 李仁全. TM掺杂的Ⅲ-Ⅴ族稀磁半导体电磁性质的第一原理计算. 物理学报, 2006, 55(2): 873-878. doi: 10.7498/aps.55.873
    [5] 乐伶聪, 马新国, 唐豪, 王扬, 李翔, 江建军. 过渡金属掺杂钛酸纳米管的电子结构和光学性质研究. 物理学报, 2010, 59(2): 1314-1320. doi: 10.7498/aps.59.1314
    [6] 周 勋, 令狐荣锋, 沈益斌, 丁迎春, 段满益, 祝文军, 徐 明. 过渡金属掺杂ZnO的电子结构和光学性质. 物理学报, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [7] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [8] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [9] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [10] 曹娟, 崔磊, 潘靖. V,Cr,Mn掺杂MoS2磁性的第一性原理研究. 物理学报, 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [11] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [12] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究. 物理学报, 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [13] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究. 物理学报, 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [14] 朱玥, 李永成, 王福合. Li掺杂对MgH2(001)表面H2分子扩散释放影响的第一性原理研究. 物理学报, 2016, 65(5): 056801. doi: 10.7498/aps.65.056801
    [15] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质. 物理学报, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [16] 陶鹏程, 黄燕, 周孝好, 陈效双, 陆卫. 掺杂对金属-MoS2界面性质调制的第一性原理研究. 物理学报, 2017, 66(11): 118201. doi: 10.7498/aps.66.118201
    [17] 王英龙, 王秀丽, 梁伟华, 郭建新, 丁学成, 褚立志, 邓泽超, 傅广生. 不同浓度Er掺杂Si纳米晶粒电子结构和光学性质的第一性原理研究. 物理学报, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [18] 赵宗彦, 柳清菊, 张 瑾, 朱忠其. 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
    [19] 段满益, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军, 徐 明. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] 杨敏, 王六定, 陈国栋, 安博, 王益军, 刘光清. 碳掺杂闭口硼氮纳米管场发射第一性原理研究. 物理学报, 2009, 58(10): 7151-7155. doi: 10.7498/aps.58.7151
  • 引用本文:
    Citation:
计量
  • 文章访问数:  661
  • PDF下载量:  382
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-19
  • 修回日期:  2014-04-29
  • 刊出日期:  2014-08-05

3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究

  • 1. 湘潭大学材料与光电物理学院, 微纳能源材料与器件湖南省重点实验室, 湘潭 411105;
  • 2. 湘潭大学数学与计算科学学院, 科学工程计算与数值仿真湖南省重点实验室, 湘潭 411105
    基金项目: 

    国家自然科学基金(批准号:11374251,11101346)、湖南省教育厅科学研究基金(批准号:12K046,YB2011B029)和湖南省自然科学基金(批准号:12JJ9002)资助的课题.

摘要: 基于密度泛函理论的第一性原理计算,研究了横截面为五边形和六边形的核壳结构硅纳米线的过渡金属Co原子替代掺杂. 通过比较形成能发现,核心位置掺杂、壳层单链掺杂以及外壳层全替代掺杂的硅纳米线都具有稳定性,其中核心位置掺杂结构的稳定性最高. 掺杂体系均呈现金属性,随着掺杂浓度的增加,电导通道数增加. Co原子掺杂的硅纳米线呈现铁磁性,具有磁矩. Bader电荷分析表明,电荷从Si原子转移至过渡金属Co原子. 与自由态时过渡金属Co原子的磁矩相比,体系中Co原子的磁矩有所降低,这主要是由Co原子4s轨道向3d/4p轨道的电荷转移以及4s,3d,4p的上自旋电子转移至下自旋导致的.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回