-
利用微芯片制备技术制备了带有电极的原位电学薄膜芯片, 并结合自制的原位透射电镜样品台, 实现了低温下透射电子显微镜聚焦电子束对InAs纳米线的精细刻蚀以及不同温度下的原位电学性能测量. 研究发现, 随着刻蚀区域截面积的减小, 纳米线的电导率也随之减小. 当纳米线的截面积从大于10000 nm2刻蚀至约800 nm2时, 纳米线电导的减小速率与截面积的减小具有线性关系. 同时利用低温聚焦电子束刻蚀, 在InAs纳米线上原位制备了一个10 nm的纳米点, 并在77与300 K下对该纳米点进行了电学性能测量. 通过测量发现在77 K 时出现库仑阻塞效应, 发生了电子隧穿现象; 而300 K时, 热扰动提供的能量使这种现象消失.
-
关键词:
- 低温电子束刻蚀 /
- 原位透射电子显微镜电学测量 /
- InAs纳米线 /
- 库仑阻塞效应
[1] Storm A J, Chen J H, Ling X S, Zandbergen H W, Dekker C 2003 Nature Mater. 2 537
[2] Wu M Y, Smeets R M M, Zandbergen M, Ziese U, Krapf D, Batson P E, Dekker N H, Dekker C, Zandbergen H W 2008 Nano Lett. 9 479
[3] Zandbergen H W, van Duuren R J, Alkemade P F, Lientschnig G, Vasquez O, Dekker C, Tichelaar F D 2005 Nano Lett. 5 549
[4] Krapf D, Wu M Y, Smeets R M M, Zandbergen H W, Dekker C, Lemay S G 2006 Nano Lett. 6 105
[5] Fischbein M D, Drndic M 2007 Nano Lett. 7 1329
[6] Song B, Schneider G F, Xu Q, Pandraud G, Dekker C, Zandbergen H W 2011 Nano Lett. 11 2247
[7] Xu Q, Wu M Y, Schneider G F, Houben L, Malladi S K, Dekker C, Yucelen E, Dunin B R E, Zandbergen H W 2013 ACS Nano 7 1566
[8] Lu Y, Merchant C A, Drndic M, Johnson A T C 2011 Nano Lett. 11 5184
[9] Liu K, Feng J, Kis A, Radenovic A 2014 ACS Nano 8 2504
[10] Zhang J, You L, Ye H, Yu D P 2007 Nanotechnology 18 155303
[11] Wang Z L, Poncharal P, De Heer W A 2000 Pure Appl. Chem. 72 209
[12] Wang J J, Shao R W, Deng Q S, Zheng K 2014 Acta Phys. Sin. 63 117303 (in Chinese) [王疆靖, 邵瑞文, 邓青松, 郑坤 2014 物理学报 63 117303]
[13] Ennos A E 1953 Br. J. Appl. Phys. 4 101
[14] Averin D V, Likharev K K 1986 J. Low Tem. Phys. 62 345
[15] Sui B C, Fang L, Zhang C 2011 Acta Phys. Sin. 60 077302
[16] Huang W Q, Miao X J, Huang Z M, Cheng H Q, Su Q 2013 Chin. Phys. B 22 64207
[17] Wang H, Han W H, Ma L H, Li X M, Yang F H 2014 Chin. Phys. B 23 88107
[18] Wang H Y, Dou X M, Ni H Q, Niu Z C Sun B Q 2014 Acta Phys. Sin. 63 0278010
[19] Ford A C, Ho J C, Chueh Y L, Tseng Y C, Fan Z, Guo J, Bokor J, Javey A 2008 Nano Lett. 9 360
[20] Scheffler M, Nadj P S, Kouwenhoven L P, Borgström M T, Bakkers E P A M 2009 J. Appl. Phys. 106 124303
-
[1] Storm A J, Chen J H, Ling X S, Zandbergen H W, Dekker C 2003 Nature Mater. 2 537
[2] Wu M Y, Smeets R M M, Zandbergen M, Ziese U, Krapf D, Batson P E, Dekker N H, Dekker C, Zandbergen H W 2008 Nano Lett. 9 479
[3] Zandbergen H W, van Duuren R J, Alkemade P F, Lientschnig G, Vasquez O, Dekker C, Tichelaar F D 2005 Nano Lett. 5 549
[4] Krapf D, Wu M Y, Smeets R M M, Zandbergen H W, Dekker C, Lemay S G 2006 Nano Lett. 6 105
[5] Fischbein M D, Drndic M 2007 Nano Lett. 7 1329
[6] Song B, Schneider G F, Xu Q, Pandraud G, Dekker C, Zandbergen H W 2011 Nano Lett. 11 2247
[7] Xu Q, Wu M Y, Schneider G F, Houben L, Malladi S K, Dekker C, Yucelen E, Dunin B R E, Zandbergen H W 2013 ACS Nano 7 1566
[8] Lu Y, Merchant C A, Drndic M, Johnson A T C 2011 Nano Lett. 11 5184
[9] Liu K, Feng J, Kis A, Radenovic A 2014 ACS Nano 8 2504
[10] Zhang J, You L, Ye H, Yu D P 2007 Nanotechnology 18 155303
[11] Wang Z L, Poncharal P, De Heer W A 2000 Pure Appl. Chem. 72 209
[12] Wang J J, Shao R W, Deng Q S, Zheng K 2014 Acta Phys. Sin. 63 117303 (in Chinese) [王疆靖, 邵瑞文, 邓青松, 郑坤 2014 物理学报 63 117303]
[13] Ennos A E 1953 Br. J. Appl. Phys. 4 101
[14] Averin D V, Likharev K K 1986 J. Low Tem. Phys. 62 345
[15] Sui B C, Fang L, Zhang C 2011 Acta Phys. Sin. 60 077302
[16] Huang W Q, Miao X J, Huang Z M, Cheng H Q, Su Q 2013 Chin. Phys. B 22 64207
[17] Wang H, Han W H, Ma L H, Li X M, Yang F H 2014 Chin. Phys. B 23 88107
[18] Wang H Y, Dou X M, Ni H Q, Niu Z C Sun B Q 2014 Acta Phys. Sin. 63 0278010
[19] Ford A C, Ho J C, Chueh Y L, Tseng Y C, Fan Z, Guo J, Bokor J, Javey A 2008 Nano Lett. 9 360
[20] Scheffler M, Nadj P S, Kouwenhoven L P, Borgström M T, Bakkers E P A M 2009 J. Appl. Phys. 106 124303
引用本文: |
Citation: |
计量
- 文章访问数: 1249
- PDF下载量: 196
- 被引次数: 0