搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

花状掺杂W-VO2/ZnO热致变色纳米复合薄膜研究

朱慧群 李毅 叶伟杰 李春波

花状掺杂W-VO2/ZnO热致变色纳米复合薄膜研究

朱慧群, 李毅, 叶伟杰, 李春波
PDF
导出引用
  • 为解决掺杂引起的二氧化钒薄膜的红外调制幅度下降以及二氧化钒复合薄膜相变温度需要进一步降低等问题, 采用纳米结构、掺杂改性和复合结构等多种机理协同作用的方案, 利用共溅射氧化法, 先在石英玻璃上制备高(002)取向的ZnO薄膜, 再在ZnO层上室温共溅射沉积钒钨金属薄膜, 最后经热氧化处理获得双层钨掺杂W-VO2/ZnO纳米复合薄膜. 利用X射线衍射、X射线光电子能谱、扫描电镜和变温光谱分析等对薄膜的结构、组分、形貌和光学特性进行了分析. 结果显示, W-VO2/ZnO 纳米复合薄膜呈花状结构, 取向性提高, 在保持掺杂薄膜相变温度(约39 ℃)和热滞回线宽度(约6 ℃)较低的情况下, 其相变前后的红外透过率差量增加近2倍, 热致变色性能得到协同增强.
    • 基金项目: 国家高技术研究发展计划(批准号:2006AA03Z348)、广东省自然科学基金(批准号:10152902001000025)、广东高校省级重点平台和重大科研项目特色创新项目(批准号:2014)、广东省大学生创新创业训练计划(批准号:教发[2012]62)和江门市产业技术研究与开发项目(批准号:江财工[2012]156)资助的课题.
    [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Gao Y F, Luo H J, Zhang Z T 2012 Nano Energy 1 221

    [3]

    Granqvist C G, Lansaker P C, Mlyuka N R 2009 Sol. Energy Mater. Sol. Cells 93 2032

    [4]

    Zhu N W, Hu M, Xia X X, Wei X Y, Liang J R 2014 Chin. Phys. B 23 048108

    [5]

    Wang X J, Liu Y Y, Li D H, Feng B H, He Z W, Qi Z 2013 Chin. Phys. B 22 066803

    [6]

    Joyeeta N, Haglund Jr R F 2008 J. Phys.: Condens. Matter 20 264016

    [7]

    Saeli M, Binions R, Piccirillo C 2009 Appl. Surf. Sci. 255 7291

    [8]

    Kyoung J, Seo M, Park H, Koo S, Kim H, Park Y, Kim B J, Ahn K, Park N, Kim H, Kim D S 2010 Opt. Express 18 16452

    [9]

    Peng Z F, Wang Y, Du Y Y, Lu D, Sun D Z 2009 J. Alloys Compd. 480 537

    [10]

    Li J, Liu C Y, Mao L J 2009 J. Solid State Chem. 182 2835

    [11]

    Wang Y L, Chen X K, Li M C 2007 Surf. Coat. Technol. 201 5344

    [12]

    Zhou S, Li Y, Zhu H Q, Sun R X, Zhang Y M, Zheng Q X, Li L, Shen Y J, Fang B Y 2012 Surf. Coat. Technol. 206 2922

    [13]

    Shi J Q, Zhou S X, You B, Wu L M 2007 Sol. Energy Mater. Sol. Cells 91 1856

    [14]

    Zhu H Q, Li Y, Zhou S, Huang Y Z, Tong G X, Sun R X, Zhang Y M, Zheng Q X, Li L, Shen Y J, Fang B Y 2011 Acta Phys. Sin. 60 098104 (in Chinese) [朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英 2011 物理学报 60 098104]

    [15]

    Kiri P, Warwick M E A, Ridley I, Binions R 2011 Thin Solid Films 520 1363

    [16]

    Yan J Z, Zhang Y, Liu Y S, Zhang Y B, Huang W X, Tu M J 2008 Rare Metal Mater. Eng. 37 1648 (in Chinese) [颜家振, 张月, 刘阳思, 张玉波, 黄婉霞, 涂铭旌 2008 稀有金属材料与工程 37 1648]

    [17]

    Wang L X, Li J P, He X L, Gao X G 2006 Acta Phys. Sin. 55 2846 (in Chinese) [王利霞, 李建平, 何秀丽, 高晓光 2006 物理学报 55 2846]

    [18]

    Xu X, Yin A Y, Du X L 2010 Appl. Surf. Sci. 256 2750

    [19]

    Zhu H Q, Li Y, Guo G X, Fang B Y, Wang X H 2013 Adv. Mater. -Rapid Commun. 7 1015

    [20]

    Case F C 1987 Appl. Opt. 26 1550

    [21]

    Yan J Z, Zhang Y, Huang W X, Tu M J 2008 Thin Solid Films 516 8554

    [22]

    He Q, Xu X D, Wen Y J, Jiang Y D, Ao T H, Fan T J, Huang L, Ma C Q, Sun Z Q 2013 Acta Phys. Sin. 62 056802 (in Chinese) [何琼, 许向东, 温粤江, 蒋亚东, 敖天宏, 樊泰君, 黄龙, 马春前, 孙自强 2013 物理学报 62 056802]

    [23]

    Pauli S A, Herger R, Willmott P R, Donev E U, Suh J Y, Haglund Jr R F 2007 J. Appl. Phys. 102 073527

    [24]

    Lopez R, Feldman L C 2004 Phys. Rev. Lett. 93 177403

  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Gao Y F, Luo H J, Zhang Z T 2012 Nano Energy 1 221

    [3]

    Granqvist C G, Lansaker P C, Mlyuka N R 2009 Sol. Energy Mater. Sol. Cells 93 2032

    [4]

    Zhu N W, Hu M, Xia X X, Wei X Y, Liang J R 2014 Chin. Phys. B 23 048108

    [5]

    Wang X J, Liu Y Y, Li D H, Feng B H, He Z W, Qi Z 2013 Chin. Phys. B 22 066803

    [6]

    Joyeeta N, Haglund Jr R F 2008 J. Phys.: Condens. Matter 20 264016

    [7]

    Saeli M, Binions R, Piccirillo C 2009 Appl. Surf. Sci. 255 7291

    [8]

    Kyoung J, Seo M, Park H, Koo S, Kim H, Park Y, Kim B J, Ahn K, Park N, Kim H, Kim D S 2010 Opt. Express 18 16452

    [9]

    Peng Z F, Wang Y, Du Y Y, Lu D, Sun D Z 2009 J. Alloys Compd. 480 537

    [10]

    Li J, Liu C Y, Mao L J 2009 J. Solid State Chem. 182 2835

    [11]

    Wang Y L, Chen X K, Li M C 2007 Surf. Coat. Technol. 201 5344

    [12]

    Zhou S, Li Y, Zhu H Q, Sun R X, Zhang Y M, Zheng Q X, Li L, Shen Y J, Fang B Y 2012 Surf. Coat. Technol. 206 2922

    [13]

    Shi J Q, Zhou S X, You B, Wu L M 2007 Sol. Energy Mater. Sol. Cells 91 1856

    [14]

    Zhu H Q, Li Y, Zhou S, Huang Y Z, Tong G X, Sun R X, Zhang Y M, Zheng Q X, Li L, Shen Y J, Fang B Y 2011 Acta Phys. Sin. 60 098104 (in Chinese) [朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英 2011 物理学报 60 098104]

    [15]

    Kiri P, Warwick M E A, Ridley I, Binions R 2011 Thin Solid Films 520 1363

    [16]

    Yan J Z, Zhang Y, Liu Y S, Zhang Y B, Huang W X, Tu M J 2008 Rare Metal Mater. Eng. 37 1648 (in Chinese) [颜家振, 张月, 刘阳思, 张玉波, 黄婉霞, 涂铭旌 2008 稀有金属材料与工程 37 1648]

    [17]

    Wang L X, Li J P, He X L, Gao X G 2006 Acta Phys. Sin. 55 2846 (in Chinese) [王利霞, 李建平, 何秀丽, 高晓光 2006 物理学报 55 2846]

    [18]

    Xu X, Yin A Y, Du X L 2010 Appl. Surf. Sci. 256 2750

    [19]

    Zhu H Q, Li Y, Guo G X, Fang B Y, Wang X H 2013 Adv. Mater. -Rapid Commun. 7 1015

    [20]

    Case F C 1987 Appl. Opt. 26 1550

    [21]

    Yan J Z, Zhang Y, Huang W X, Tu M J 2008 Thin Solid Films 516 8554

    [22]

    He Q, Xu X D, Wen Y J, Jiang Y D, Ao T H, Fan T J, Huang L, Ma C Q, Sun Z Q 2013 Acta Phys. Sin. 62 056802 (in Chinese) [何琼, 许向东, 温粤江, 蒋亚东, 敖天宏, 樊泰君, 黄龙, 马春前, 孙自强 2013 物理学报 62 056802]

    [23]

    Pauli S A, Herger R, Willmott P R, Donev E U, Suh J Y, Haglund Jr R F 2007 J. Appl. Phys. 102 073527

    [24]

    Lopez R, Feldman L C 2004 Phys. Rev. Lett. 93 177403

  • [1] 朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英. 纳米VO2/ZnO复合薄膜的热致变色特性研究. 物理学报, 2011, 60(9): 098104. doi: 10.7498/aps.60.098104
    [2] 佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞. 磁控溅射制备W掺杂VO2/FTO复合薄膜及其性能分析. 物理学报, 2013, 62(20): 208102. doi: 10.7498/aps.62.208102
    [3] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质. 物理学报, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [4] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性. 物理学报, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [5] 陈丹平, 姜雄伟, 朱从善. Bi2O3-Li2O玻璃的热致变色研究. 物理学报, 2001, 50(8): 1501-1506. doi: 10.7498/aps.50.1501
    [6] 刘学超, 施尔畏, 宋力昕, 张华伟, 陈之战. 固相反应法制备Co掺杂ZnO的磁性和光学性能研究. 物理学报, 2006, 55(5): 2557-2561. doi: 10.7498/aps.55.2557
    [7] 羊新胜, 赵 勇. 铁磁性锰氧化物掺杂的ZnO压敏电阻性能研究. 物理学报, 2008, 57(5): 3188-3192. doi: 10.7498/aps.57.3188
    [8] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究. 物理学报, 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [9] 严国清, 谢凯旋, 莫仲荣, 路忠林, 邹文琴, 王申, 岳凤娟, 吴镝, 张凤鸣, 都有为. 共沉淀法制备Co掺杂ZnO的室温铁磁性的研究. 物理学报, 2009, 58(2): 1237-1241. doi: 10.7498/aps.58.1237
    [10] 鲍善永, 董武军, 徐兴, 栾田宝, 李杰, 张庆瑜. 氧分压对Mg掺杂ZnO薄膜结晶质量和光学特性的影响. 物理学报, 2011, 60(3): 036804. doi: 10.7498/aps.60.036804
    [11] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [12] 刘玮洁, 孙正昊, 黄宇欣, 冷静, 崔海宁. 不同价态稀土元素Yb掺杂ZnO的电子结构和光学性质. 物理学报, 2013, 62(12): 127101. doi: 10.7498/aps.62.127101
    [13] 唐欣月, 高红, 潘思明, 孙鉴波, 姚秀伟, 张喜田. 单根In掺杂ZnO纳米带场效应管的电学性质. 物理学报, 2014, 63(19): 197302. doi: 10.7498/aps.63.197302
    [14] 侯清玉, 李勇, 赵春旺. Al掺杂和空位对ZnO磁性影响的第一性原理研究. 物理学报, 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [15] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [16] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [17] 袁娣, 黄多辉, 罗华峰, 王藩侯. Li, N双受主共掺杂实现p型ZnO的第一性原理研究. 物理学报, 2010, 59(9): 6457-6465. doi: 10.7498/aps.59.6457
    [18] 杨 春, 余 毅, 李言荣, 刘永华. 温度对ZnO/Al2O3(0001)界面的吸附、扩散及生长初期模式的影响. 物理学报, 2005, 54(12): 5907-5913. doi: 10.7498/aps.54.5907
    [19] 郭家俊, 董静雨, 康鑫, 陈伟, 赵旭. 过渡金属元素X(X=Mn,Fe,Co,Ni)掺杂对ZnO基阻变存储器性能的影响. 物理学报, 2018, 67(6): 063101. doi: 10.7498/aps.67.20172459
    [20] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1290
  • PDF下载量:  945
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-19
  • 修回日期:  2014-07-22
  • 刊出日期:  2014-12-05

花状掺杂W-VO2/ZnO热致变色纳米复合薄膜研究

  • 1. 五邑大学应用物理与材料学院, 江门 529020;
  • 2. 上海理工大学光电信息与计算机工程学院, 上海 200093
    基金项目: 

    国家高技术研究发展计划(批准号:2006AA03Z348)、广东省自然科学基金(批准号:10152902001000025)、广东高校省级重点平台和重大科研项目特色创新项目(批准号:2014)、广东省大学生创新创业训练计划(批准号:教发[2012]62)和江门市产业技术研究与开发项目(批准号:江财工[2012]156)资助的课题.

摘要: 为解决掺杂引起的二氧化钒薄膜的红外调制幅度下降以及二氧化钒复合薄膜相变温度需要进一步降低等问题, 采用纳米结构、掺杂改性和复合结构等多种机理协同作用的方案, 利用共溅射氧化法, 先在石英玻璃上制备高(002)取向的ZnO薄膜, 再在ZnO层上室温共溅射沉积钒钨金属薄膜, 最后经热氧化处理获得双层钨掺杂W-VO2/ZnO纳米复合薄膜. 利用X射线衍射、X射线光电子能谱、扫描电镜和变温光谱分析等对薄膜的结构、组分、形貌和光学特性进行了分析. 结果显示, W-VO2/ZnO 纳米复合薄膜呈花状结构, 取向性提高, 在保持掺杂薄膜相变温度(约39 ℃)和热滞回线宽度(约6 ℃)较低的情况下, 其相变前后的红外透过率差量增加近2倍, 热致变色性能得到协同增强.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回