搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拓扑绝缘体(Bi0.5Sb0.5)2Te3薄膜中的线性磁阻

关童 滕静 吴克辉 李永庆

拓扑绝缘体(Bi0.5Sb0.5)2Te3薄膜中的线性磁阻

关童, 滕静, 吴克辉, 李永庆
PDF
导出引用
导出核心图
  • 本文报道了拓扑绝缘体(Bi0.5Sb0.5)2Te3薄膜中线性磁阻问题的系统性研究工作. 此体系中, 线性磁阻在很宽的温度和磁场范围内出现: 磁场高达18 T时磁阻仍没有饱和趋势, 并且当温度不高于50 K时, 线性磁阻的大小对温度的变化不敏感. 栅压调控化学势可明显改变线性磁阻的大小. 当化学势接近狄拉克点时, 线性磁阻最为显著. 这些结果说明电荷分布的不均匀性是引起该材料线性磁阻的根源.
    • 基金项目: 国家自然科学基金(批准号: 91121003, 11374337)、国家重点基础研究发展计划(973计划) (批准号: 2012CB921703)和中国科学院资助的课题.
    [1]

    Pippard A B 1989 Magnetoresistance in metals (Cambridge: Cambridge University Press)

    [2]

    Kapitza P 1928 Proc. R. Soc. London, Ser. A 119 358

    [3]

    Abrikosov A A 1969 JETP 29 746

    [4]

    Xu R, Husmann A, Rosenbaum T F, Saboungi M -L, Enderby J E, Littlewood P B 1997 Nature 390 57

    [5]

    Abrikosov A A 1998 Phys. Rev. B 58 2788

    [6]

    Parish M M, Littlewood P B 2003 Nature 426 162

    [7]

    Hu J S, Rosenbaum T F 2008 Nat. Mater. 76 97

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [9]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [10]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [11]

    Cho S, Fuhrer M S 2008 Phys. Rev. B 77 081402

    [12]

    Ping J L, Yudhistira I, Ramakrishnan N, Cho S, Adam S, Fuhrer M S 2014 Phys. Rev. Lett. 113 047206

    [13]

    Jia Z Z, Zhang R, Han Q, Yan Q J, Zhu R, Yu D P, Wu X S 2014 Appl. Phys. Lett. 105 143103

    [14]

    Qu D X, Hor Y S, Xiong J, Cava R J, Ong N P 2010 Science 329 821

    [15]

    Zhang G H, Qin H J, Chen J, He X Y, Lu L, Li Y Q, Wu K H 2011 Adv. Funct. Mater. 21 2351

    [16]

    Tang H, Liang D, Qiu R L J, Gao X P A 2011 ACS Nano 5 7510

    [17]

    Wang J, DaSilva A M, Chang C Z, He K, Jain J K, Samarth N, Ma X C, Xue Q K, Chan M H W 2011 Phys. Rev. B 83 245438

    [18]

    He H T, Li B K, Liu H C, Guo X, Wang Z Y, Xie M H, Wang J N 2012 Appl. Phys. Lett. 100 032105

    [19]

    Gao B F, Gehring P, Burghard M, Kern K 2012 Appl. Phys. Lett. 100 212402

    [20]

    He X Y, Guan T, Wang X X, Feng B J, Cheng P, Chen L, Li Y Q, Wu K H 2012 Appl. Phys. Lett. 101 123111

    [21]

    Zhang S X, McDonald R D, Shekhter A, Bi Z X, Li Y, Jia X Q, Picraux S T 2012 Appl. Phys. Lett. 101 202403

    [22]

    Assaf B A, Cardinal T, Wei P, Katmis F, Moodera J S, Heiman D 2013 Appl. Phys. Lett. 102 012102

    [23]

    Zhao Y F, Chang C Z, Jiang Y, DaSilva A M, Sun Y, Wang H C, Xing Y, Wang Y, He K, Ma X C, Xue Q K, Wang J 2013 Sci. Rep. 3 3060

    [24]

    Tian J F, Chang C Z, Cao H L, He K, Ma X C, Xue Q K, Chen Y P 2014 Sci. Rep. 4 4859

    [25]

    Wang Z H, Yang L, Li X J, Zhao X T, Wang H L, Zhang Z D, Gao X P A 2014 Nano Lett. 14 6510

    [26]

    Wang H C, Liu H W, Chang C Z, Zuo H K, Zhao Y F, Sun Y, Xia Z C, He K, Ma X C, Xie X C, Xue Q K, Wang J 2014 Sci. Rep. 4 5817

    [27]

    Kong D S, Chen Y L, Cha J J, Zhang Q F, Analytis J G, Lai K J, Liu Z K, Hong S S, Koski K J, Mo S K, Hussain Z, Fisher I R, Shen Z X, Cui Y 2011 Nat. Nanotech. 6 705

    [28]

    Zhang J S, Chang C Z, Zhang Z C, Wen J, Feng X, Li K, Liu M H, He K, Wang L L, Chen X, Xue Q K, Ma X C, Wang Y Y 2011 Nat. Commun. 2 574

    [29]

    Neville R C, Hoeneisen B, Mead C A 1972 J. Appl. Phys. 43 2124

    [30]

    Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J, Triscone J M 2008 Nature 456 624

    [31]

    Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L, Wu K H, Li Y Q, Lu L 2010 Phys. Rev. Lett. 105 176602

    [32]

    Yang W M, Lin C J, Liao J, Li Y Q 2013 Chin. Phys. B 22 097202

    [33]

    Liu M H, Chang C Z, Zhang Z C, Zhang Y, Ruan W, He K, Wang L L, Chen X, Jia J F, Zhang S C, Xue Q K, Ma X C, Wang Y Y 2011 Phys. Rev. B 83 165440

    [34]

    Liu Y, Ma Z, Zhao Y F, Meenakshi S, Wang J 2013 Chin. Phys. B 22 067302

    [35]

    Chen J, He X Y, Wu K H, Ji Z Q, Lu L, Shi J R, Smet J H, Li Y Q 2011 Phys. Rev. B 83 241304

    [36]

    Lin C J, He X Y, Liao J, Wang X X, Sacksteder IV V, Yang W M, Guan T, Zhang Q M, Gu L, Zhang G Y, Zeng C G, Dai X, Wu K H, Li Y Q 2013 Phys. Rev. B 88 041307

    [37]

    Skinner B, Chen T R, Shklovskii B I 2013 J. Exp. Theor. Phys. 117 579

    [38]

    Wang C M, Lei X L 2012 Phys. Rev. B 86 035442

    [39]

    Martin J, Akerman N, Ulbricht G, Lohmann T, Smet J H, Klitzing K von, Yacoby A 2008 Nat. Phys. 4 144

    [40]

    Kastl C, Guan T, He X Y, Wu K H, Li Y Q, Holleitner A W 2012 Appl. Phys. Lett. 101 251110

  • [1]

    Pippard A B 1989 Magnetoresistance in metals (Cambridge: Cambridge University Press)

    [2]

    Kapitza P 1928 Proc. R. Soc. London, Ser. A 119 358

    [3]

    Abrikosov A A 1969 JETP 29 746

    [4]

    Xu R, Husmann A, Rosenbaum T F, Saboungi M -L, Enderby J E, Littlewood P B 1997 Nature 390 57

    [5]

    Abrikosov A A 1998 Phys. Rev. B 58 2788

    [6]

    Parish M M, Littlewood P B 2003 Nature 426 162

    [7]

    Hu J S, Rosenbaum T F 2008 Nat. Mater. 76 97

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [9]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [10]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [11]

    Cho S, Fuhrer M S 2008 Phys. Rev. B 77 081402

    [12]

    Ping J L, Yudhistira I, Ramakrishnan N, Cho S, Adam S, Fuhrer M S 2014 Phys. Rev. Lett. 113 047206

    [13]

    Jia Z Z, Zhang R, Han Q, Yan Q J, Zhu R, Yu D P, Wu X S 2014 Appl. Phys. Lett. 105 143103

    [14]

    Qu D X, Hor Y S, Xiong J, Cava R J, Ong N P 2010 Science 329 821

    [15]

    Zhang G H, Qin H J, Chen J, He X Y, Lu L, Li Y Q, Wu K H 2011 Adv. Funct. Mater. 21 2351

    [16]

    Tang H, Liang D, Qiu R L J, Gao X P A 2011 ACS Nano 5 7510

    [17]

    Wang J, DaSilva A M, Chang C Z, He K, Jain J K, Samarth N, Ma X C, Xue Q K, Chan M H W 2011 Phys. Rev. B 83 245438

    [18]

    He H T, Li B K, Liu H C, Guo X, Wang Z Y, Xie M H, Wang J N 2012 Appl. Phys. Lett. 100 032105

    [19]

    Gao B F, Gehring P, Burghard M, Kern K 2012 Appl. Phys. Lett. 100 212402

    [20]

    He X Y, Guan T, Wang X X, Feng B J, Cheng P, Chen L, Li Y Q, Wu K H 2012 Appl. Phys. Lett. 101 123111

    [21]

    Zhang S X, McDonald R D, Shekhter A, Bi Z X, Li Y, Jia X Q, Picraux S T 2012 Appl. Phys. Lett. 101 202403

    [22]

    Assaf B A, Cardinal T, Wei P, Katmis F, Moodera J S, Heiman D 2013 Appl. Phys. Lett. 102 012102

    [23]

    Zhao Y F, Chang C Z, Jiang Y, DaSilva A M, Sun Y, Wang H C, Xing Y, Wang Y, He K, Ma X C, Xue Q K, Wang J 2013 Sci. Rep. 3 3060

    [24]

    Tian J F, Chang C Z, Cao H L, He K, Ma X C, Xue Q K, Chen Y P 2014 Sci. Rep. 4 4859

    [25]

    Wang Z H, Yang L, Li X J, Zhao X T, Wang H L, Zhang Z D, Gao X P A 2014 Nano Lett. 14 6510

    [26]

    Wang H C, Liu H W, Chang C Z, Zuo H K, Zhao Y F, Sun Y, Xia Z C, He K, Ma X C, Xie X C, Xue Q K, Wang J 2014 Sci. Rep. 4 5817

    [27]

    Kong D S, Chen Y L, Cha J J, Zhang Q F, Analytis J G, Lai K J, Liu Z K, Hong S S, Koski K J, Mo S K, Hussain Z, Fisher I R, Shen Z X, Cui Y 2011 Nat. Nanotech. 6 705

    [28]

    Zhang J S, Chang C Z, Zhang Z C, Wen J, Feng X, Li K, Liu M H, He K, Wang L L, Chen X, Xue Q K, Ma X C, Wang Y Y 2011 Nat. Commun. 2 574

    [29]

    Neville R C, Hoeneisen B, Mead C A 1972 J. Appl. Phys. 43 2124

    [30]

    Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J, Triscone J M 2008 Nature 456 624

    [31]

    Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L, Wu K H, Li Y Q, Lu L 2010 Phys. Rev. Lett. 105 176602

    [32]

    Yang W M, Lin C J, Liao J, Li Y Q 2013 Chin. Phys. B 22 097202

    [33]

    Liu M H, Chang C Z, Zhang Z C, Zhang Y, Ruan W, He K, Wang L L, Chen X, Jia J F, Zhang S C, Xue Q K, Ma X C, Wang Y Y 2011 Phys. Rev. B 83 165440

    [34]

    Liu Y, Ma Z, Zhao Y F, Meenakshi S, Wang J 2013 Chin. Phys. B 22 067302

    [35]

    Chen J, He X Y, Wu K H, Ji Z Q, Lu L, Shi J R, Smet J H, Li Y Q 2011 Phys. Rev. B 83 241304

    [36]

    Lin C J, He X Y, Liao J, Wang X X, Sacksteder IV V, Yang W M, Guan T, Zhang Q M, Gu L, Zhang G Y, Zeng C G, Dai X, Wu K H, Li Y Q 2013 Phys. Rev. B 88 041307

    [37]

    Skinner B, Chen T R, Shklovskii B I 2013 J. Exp. Theor. Phys. 117 579

    [38]

    Wang C M, Lei X L 2012 Phys. Rev. B 86 035442

    [39]

    Martin J, Akerman N, Ulbricht G, Lohmann T, Smet J H, Klitzing K von, Yacoby A 2008 Nat. Phys. 4 144

    [40]

    Kastl C, Guan T, He X Y, Wu K H, Li Y Q, Holleitner A W 2012 Appl. Phys. Lett. 101 251110

  • 引用本文:
    Citation:
计量
  • 文章访问数:  653
  • PDF下载量:  691
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-06
  • 修回日期:  2015-02-11
  • 刊出日期:  2015-04-05

拓扑绝缘体(Bi0.5Sb0.5)2Te3薄膜中的线性磁阻

  • 1. 中国科学院物理研究所, 北京凝聚态物理国家实验室, 北京 100190
    基金项目: 

    国家自然科学基金(批准号: 91121003, 11374337)、国家重点基础研究发展计划(973计划) (批准号: 2012CB921703)和中国科学院资助的课题.

摘要: 本文报道了拓扑绝缘体(Bi0.5Sb0.5)2Te3薄膜中线性磁阻问题的系统性研究工作. 此体系中, 线性磁阻在很宽的温度和磁场范围内出现: 磁场高达18 T时磁阻仍没有饱和趋势, 并且当温度不高于50 K时, 线性磁阻的大小对温度的变化不敏感. 栅压调控化学势可明显改变线性磁阻的大小. 当化学势接近狄拉克点时, 线性磁阻最为显著. 这些结果说明电荷分布的不均匀性是引起该材料线性磁阻的根源.

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回