搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下有序晶态合金Fe3Pt的低能声子不稳定性及磁性反常

成泰民 张龙燕 孙腾 张新欣 朱林 李林

高压下有序晶态合金Fe3Pt的低能声子不稳定性及磁性反常

成泰民, 张龙燕, 孙腾, 张新欣, 朱林, 李林
PDF
导出引用
导出核心图
  • 有序晶态Fe3Pt因瓦合金处于一种特殊的磁临界状态, 这种磁临界状态下体系的晶格动力学稳定性对压力极为敏感. 基于密度泛函理论的第一性原理的投影缀加平面波方法研究了不同晶态合金的Fe3Pt的焓和磁性随压力的变化规律, 结果表明, 在压力小于18.54 GPa下, P4/mbm结构是热力学稳定的相. Pm3m结构、I4/mmm结构、DO22结构的Fe3Pt在铁磁性坍塌临界压力附近体系的总磁矩急剧下降并具有振荡现象, 且I4/mmm结构和DO22结构的Fe3Pt 在临界压力附近出现了Fe1原子磁矩反转现象. 在43 GPa下, DO22结构的Fe3Pt出现了亚铁磁微观磁特性突然增强且伴随着体积突然增大的现象. 在高压下, 对Pm3m结构Fe3Pt的晶格动力学计算表明, 压力小于26.95 GPa的铁磁态下体系的自发磁化诱导了体系横向声学支声子软化, 表明体系中存在很强的自发体积磁致伸缩. 特别是在铁磁性坍塌临界压力41.9 GPa至磁性完全消失的57.25 GPa压力区间, 晶格动力学稳定性对压力更加敏感. 压力大于57.25 GPa时, 压力诱导了体系声子谱的稳定.
    • 基金项目: 国家自然科学基金(批准号: 11374215)、吉林大学超硬材料国家重点实验室开放课题(批准号: 201304)、中国博士后科学基金(批准号: 200940501018)和辽宁省教育厅科学研究项目(批准号: L2014172)资助的课题.
    [1]

    Nataf L, Decremps F, Gauthier M, Canny B 2006 Phys. Rev. B 74 184422

    [2]

    Xu J H, Oguchi T 1987 Phys. Rev. B 35 6940

    [3]

    Ravindran P, Subramoniam G, Asokamani R 1996 Phys. Rev. B 53 1129

    [4]

    Ravindran P, Asokamani R 1994 Phys. Rev. B 50 668

    [5]

    Wassermann E F, Schubert N, Kktner J, Rellinghaus B 1995 J. Magn. Magn. Mater. 140-144 229

    [6]

    Endoh Y 1979 J. Magn. Magn. Mater. 10 177

    [7]

    Tajima K, Endoh Y, Ishikawa Y 1976 Phys. Rev. Lett. 37 519

    [8]

    Noda Y, Endoh Y 1988 J. Phys. Soc. Jpn. 57 4225

    [9]

    Ishikawa Y, Ondera S, Tajima K 1979 J. Magn. Magn. Mater. 10 183

    [10]

    Xianyu Z, Ishikawa Y, Onodera S 1982 J. Phys. Soc. Jpn. 51 1799

    [11]

    Xianyu Z, Ishikawa Y, Fukunaga T, Watanabe N 1985 J. Phys. F: Met. Phys. 15 1799

    [12]

    Lu Z C, Xianyu Z, Li J Z, Kang J, Ye C T, Li Z Q, Shen B G 1995 J. Magn. Magn. Mater. 140-144 219

    [13]

    Xianyu Z, Li J Z, Lu Z C, Kang J, Ye C T, Li Z Q 1995 Physica B 213-214 535

    [14]

    Wiele N, Franz H, Petry W 1999 Physica B 263-264 716

    [15]

    Gruner M E, Adeagbo W A, Zayak A T, Hucht A, Entel P 2010 Phys. Rev. B 81 064109

    [16]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [17]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15

    [18]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [19]

    Perdew J P, Burke S, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [20]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [21]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [22]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106

    [23]

    Menshikov A, Tarnkzi T, Krhn E 1975 Phys. Stat. Sol. (a) 28 K85

    [24]

    Whl M, Sandratskii L M, Kibler J 1995 J. Magn. Magn. Mater. 140-144 225

    [25]

    Nakata Y 2003 Mater. Trans. 44 1706

    [26]

    Kunzler J V, Grandi T A, Schreiner W H, Pureur P, Brandao D E 1980 J. Phys. Chem. Solids 41 1023

    [27]

    Ilyushin A S, Wallace W E 1976 J. Solid State Chem. 17 385

    [28]

    Dasgupta A, Horton J A, Liu C T 1984 High Temp. Alloys: Theory Des. [Proc. Conf.] 115

    [29]

    Zunger A, Wei S H, Ferreira L G, Bernard J E 1990 Phys. Rev. Lett. 65 353

    [30]

    Abrikosov I A, Simak S I, Johansson B 1997 Phys. Rev. B 56 9319

    [31]

    van de Walle A, Tiwary P, de Jong M, Olmsted D L, Asta M, Dick A, Shin D, Wang Y, Chen L Q, Liu Z K 2013 CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 42 13

  • [1]

    Nataf L, Decremps F, Gauthier M, Canny B 2006 Phys. Rev. B 74 184422

    [2]

    Xu J H, Oguchi T 1987 Phys. Rev. B 35 6940

    [3]

    Ravindran P, Subramoniam G, Asokamani R 1996 Phys. Rev. B 53 1129

    [4]

    Ravindran P, Asokamani R 1994 Phys. Rev. B 50 668

    [5]

    Wassermann E F, Schubert N, Kktner J, Rellinghaus B 1995 J. Magn. Magn. Mater. 140-144 229

    [6]

    Endoh Y 1979 J. Magn. Magn. Mater. 10 177

    [7]

    Tajima K, Endoh Y, Ishikawa Y 1976 Phys. Rev. Lett. 37 519

    [8]

    Noda Y, Endoh Y 1988 J. Phys. Soc. Jpn. 57 4225

    [9]

    Ishikawa Y, Ondera S, Tajima K 1979 J. Magn. Magn. Mater. 10 183

    [10]

    Xianyu Z, Ishikawa Y, Onodera S 1982 J. Phys. Soc. Jpn. 51 1799

    [11]

    Xianyu Z, Ishikawa Y, Fukunaga T, Watanabe N 1985 J. Phys. F: Met. Phys. 15 1799

    [12]

    Lu Z C, Xianyu Z, Li J Z, Kang J, Ye C T, Li Z Q, Shen B G 1995 J. Magn. Magn. Mater. 140-144 219

    [13]

    Xianyu Z, Li J Z, Lu Z C, Kang J, Ye C T, Li Z Q 1995 Physica B 213-214 535

    [14]

    Wiele N, Franz H, Petry W 1999 Physica B 263-264 716

    [15]

    Gruner M E, Adeagbo W A, Zayak A T, Hucht A, Entel P 2010 Phys. Rev. B 81 064109

    [16]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [17]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15

    [18]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [19]

    Perdew J P, Burke S, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [20]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [21]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [22]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106

    [23]

    Menshikov A, Tarnkzi T, Krhn E 1975 Phys. Stat. Sol. (a) 28 K85

    [24]

    Whl M, Sandratskii L M, Kibler J 1995 J. Magn. Magn. Mater. 140-144 225

    [25]

    Nakata Y 2003 Mater. Trans. 44 1706

    [26]

    Kunzler J V, Grandi T A, Schreiner W H, Pureur P, Brandao D E 1980 J. Phys. Chem. Solids 41 1023

    [27]

    Ilyushin A S, Wallace W E 1976 J. Solid State Chem. 17 385

    [28]

    Dasgupta A, Horton J A, Liu C T 1984 High Temp. Alloys: Theory Des. [Proc. Conf.] 115

    [29]

    Zunger A, Wei S H, Ferreira L G, Bernard J E 1990 Phys. Rev. Lett. 65 353

    [30]

    Abrikosov I A, Simak S I, Johansson B 1997 Phys. Rev. B 56 9319

    [31]

    van de Walle A, Tiwary P, de Jong M, Olmsted D L, Asta M, Dick A, Shin D, Wang Y, Chen L Q, Liu Z K 2013 CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 42 13

  • [1] 成泰民, 孙腾, 张龙燕, 张新欣, 朱林, 李林. 高压下'-Fe4N晶态合金的声子稳定性与磁性. 物理学报, 2015, 64(15): 156301. doi: 10.7498/aps.64.156301
    [2] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [3] 卢志鹏, 祝文军, 卢铁城. 高压下Fe从bcc到hcp结构相变机理的第一性原理计算. 物理学报, 2013, 62(5): 056401. doi: 10.7498/aps.62.056401
    [4] 严顺涛, 姜振益. Cu掺杂对TiNi合金马氏体相变路径影响的第一性原理研究. 物理学报, 2017, 66(13): 130501. doi: 10.7498/aps.66.130501
    [5] 江学范, 全宏瑞, 罗礼进, 仲崇贵, 谭志中, 蒋青. Heusler合金Mn2NiGe磁性形状记忆效应的第一性原理预测. 物理学报, 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [6] 丁俊, 文黎巍, 王玉梅, 裴慧霞. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [7] 姚仲瑜, 孙丽, 潘孟美, 孙书娟, 刘汉军. 第一性原理研究half-Heusler合金VLiBi和CrLiBi的半金属铁磁性. 物理学报, 2018, 67(21): 217501. doi: 10.7498/aps.67.20181129
    [8] 刘绍军, 卢铁城, 陈向荣, 崔新林, 祝文军, 卢志鹏. 单轴应变条件下Fe从α到ε结构相变机制的第一性原理计算. 物理学报, 2010, 59(6): 4303-4312. doi: 10.7498/aps.59.4303
    [9] 马蕾, 王旭, 尚家香. Pd掺杂对NiTi合金马氏体相变和热滞影响的第一性原理研究. 物理学报, 2014, 63(23): 233103. doi: 10.7498/aps.63.233103
    [10] 孙源, 黄祖飞, 明星, 王春忠, 陈岗, 范厚刚. BiFeO3中各离子在铁电相变中作用本质的第一性原理研究. 物理学报, 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [11] 余本海, 陈东. α-, β-和γ-Si3N4 高压下的电子结构和相变: 第一性原理研究 . 物理学报, 2012, 61(19): 197102. doi: 10.7498/aps.61.197102
    [12] 姚仲瑜, 孙丽, 潘孟美, 孙书娟. 第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性. 物理学报, 2016, 65(12): 127501. doi: 10.7498/aps.65.127501
    [13] 江学范, 罗礼进, 仲崇贵, 方靖淮, 蒋青. Heusler合金Ni2MnSi的电子结构、磁性、压力响应及四方变形的第一性原理研究. 物理学报, 2010, 59(1): 521-526. doi: 10.7498/aps.59.521
    [14] 颜送灵, 唐黎明, 赵宇清. 不同组分厚度比的LaMnO3/SrTiO3异质界面电子结构和磁性的第一性原理研究. 物理学报, 2016, 65(7): 077301. doi: 10.7498/aps.65.077301
    [15] 刘常升, 李永华, 朱建新, 郑伟涛, 王煜明, 孟繁玲. NiTi合金的第一性原理研究. 物理学报, 2008, 57(11): 7204-7209. doi: 10.7498/aps.57.7204
    [16] 王藩侯, 杨俊升, 黄多辉, 曹启龙, 袁娣. 第一原理研究Mn掺杂LiNbO3晶体的磁性和光吸收性质. 物理学报, 2015, 64(9): 097102. doi: 10.7498/aps.64.097102
    [17] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究. 物理学报, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [18] 肖振林, 史力斌. 利用第一性原理研究Ni掺杂ZnO铁磁性起源. 物理学报, 2011, 60(2): 027502. doi: 10.7498/aps.60.027502
    [19] 石瑜, 白洋, 莫丽玢, 向青云, 黄亚丽, 曹江利. H掺杂α-Fe2O3的第一性原理研究. 物理学报, 2015, 64(11): 116301. doi: 10.7498/aps.64.116301
    [20] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
  • 引用本文:
    Citation:
计量
  • 文章访问数:  524
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-25
  • 修回日期:  2015-01-27
  • 刊出日期:  2015-07-20

高压下有序晶态合金Fe3Pt的低能声子不稳定性及磁性反常

  • 1. 沈阳化工大学数理系, 沈阳 110142;
  • 2. 东北大学理学院, 沈阳 110004
    基金项目: 

    国家自然科学基金(批准号: 11374215)、吉林大学超硬材料国家重点实验室开放课题(批准号: 201304)、中国博士后科学基金(批准号: 200940501018)和辽宁省教育厅科学研究项目(批准号: L2014172)资助的课题.

摘要: 有序晶态Fe3Pt因瓦合金处于一种特殊的磁临界状态, 这种磁临界状态下体系的晶格动力学稳定性对压力极为敏感. 基于密度泛函理论的第一性原理的投影缀加平面波方法研究了不同晶态合金的Fe3Pt的焓和磁性随压力的变化规律, 结果表明, 在压力小于18.54 GPa下, P4/mbm结构是热力学稳定的相. Pm3m结构、I4/mmm结构、DO22结构的Fe3Pt在铁磁性坍塌临界压力附近体系的总磁矩急剧下降并具有振荡现象, 且I4/mmm结构和DO22结构的Fe3Pt 在临界压力附近出现了Fe1原子磁矩反转现象. 在43 GPa下, DO22结构的Fe3Pt出现了亚铁磁微观磁特性突然增强且伴随着体积突然增大的现象. 在高压下, 对Pm3m结构Fe3Pt的晶格动力学计算表明, 压力小于26.95 GPa的铁磁态下体系的自发磁化诱导了体系横向声学支声子软化, 表明体系中存在很强的自发体积磁致伸缩. 特别是在铁磁性坍塌临界压力41.9 GPa至磁性完全消失的57.25 GPa压力区间, 晶格动力学稳定性对压力更加敏感. 压力大于57.25 GPa时, 压力诱导了体系声子谱的稳定.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回