搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

主副垂直腔面发射激光器动力学系统混沌输出的时延特征及带宽分析

杨显杰 陈建军 夏光琼 吴加贵 吴正茂

主副垂直腔面发射激光器动力学系统混沌输出的时延特征及带宽分析

杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂
PDF
导出引用
导出核心图
  • 基于垂直腔面发射激光器(VCSEL)的自旋反转模型, 数值研究了由一个光反馈VCSEL (定义为主VCSEL, M-VCSEL)输出的混沌光单向注入到另一个VCSEL (定义为副VCSLE, S-VCSEL)所构成的主副VCSELs系统的混沌动力学特性, 分析了注入强度、M-VCSEL与S-VCSEL之间的频率失谐以及M-VCSEL所受到的光反馈强度对系统混沌输出时延特征(包括强度时延特征(I-TDS) 和相位时延特征(P-TDS))以及输出带宽(BW)的影响. 结果显示: 通过调节注入强度和频率失谐, 该系统混沌输出的两个偏振分量(X-PC和Y-PC)的P-TDS和I-TDS可以同时得到抑制; 进一步分析注入强度和频率失谐对混沌BW的影响, 发现在较大负频率失谐区域, 系统可输出BW超过30 GHz 的X-PC和Y-PC混沌信号; 结合系统混沌输出信号的TDS与BW在注入强度和频率失谐参量空间下的演化特性, 可确定宽带宽、低时延特征混沌信号输出的参量空间区域. 此外, 通过合理调节M-VCSEL 所受到的光反馈强度, 可以显著优化系统的混沌输出信号质量.
      通信作者: 吴正茂, zmwu@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61178011, 61275116, 61475127, 11474233, 61575163)、重庆市高等学校青年骨干教师资助计划(批准号: 102060-20600512)和中央高校基本科研业务费专项基金(批准号: XDJK2013B037)资助的课题.
    [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, Garcia-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [2]

    Yan S L 2014 Chin. Phys. B 23 090503

    [3]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [4]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki S, Yoshimori M, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [5]

    Reidler I, Aviad Y, Rosenbluh M, Kantar I 2009 Phys. Rev. Lett. 103 024102

    [6]

    Ohtsubo J 2013 Semiconductor Lasers: Stability, Instability and -Chaos (3rd Ed.) (Berlin: Springer) p26

    [7]

    Vicente R, Dauden J, Colet P, Toral R 2005 IEEE J. Quantum Electron. 41 541

    [8]

    Jafari A, Sedghi H, Mabhouti K, Behnia S 2011 Opt. Commun. 284 3018

    [9]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661

    [10]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [11]

    Zhao Q C, Wang Y C, Wang A B 2009 Appl. Opt. 48 3515

    [12]

    Udaltsov V S, Goedgebuer J P, Larger L, Cuenot J B, Levy P, Rhodes W T 2003 Phys. Lett. A 308 54

    [13]

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679 (in Chinese) [张继兵, 张建忠, 杨毅彪, 梁君生, 王云才 2010 物理学报 59 7679]

    [14]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [15]

    Nguimdo R M, Soriano M C, Colet P 2011 Opt. Lett. 36 4332

    [16]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [17]

    Nguimdo R M, Verschaffelt G, Danckaert J, Sande G V 2012 Opt. Lett. 37 2541

    [18]

    Xiang S Y, Pan W, Zhang L Y, Wen A J, Shang L, Zhang H X, Lin L 2014 Opt. Commun. 324 38

    [19]

    Priyadarshi S, Hong Y H, Pierce I, Shore K A 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700707

    [20]

    Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829

    [21]

    Hong Y H, Spencer P S, Shore K A 2014 IEEE J. Quantum Electron. 50 236

    [22]

    Simpson T B, Liu J M, Gavrielides A 1995 IEEE Photon. Technol. Lett. 7 709

    [23]

    Simpson T B, Liu J M 1997 IEEE Photon. Technol. Lett. 9 1322

    [24]

    Takiguchi Y, Ohyagi K, Ohtsubo J 2003 Opt. Lett. 28 319

    [25]

    Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372 (in Chinese) [王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭萍 2007 物理学报 56 4372]

    [26]

    Wang Y C, Zhang G W, Wang A B 2007 Opt. Commun. 277 156

    [27]

    Wang A B, Wang Y C, He H C 2008 IEEE Photon. Technol. Lett. 20 1633

    [28]

    Someya H, Oowada I, Okumura H, Kida T, Uchida A 2009 Opt. Express 17 19536

    [29]

    Hirano K, Yamazaki T, Morikatsu S, Okumura H, Aida H, Uchida A, Yoshimori S, Yoshimura K, Harayama T, Davis P 2010 Opt. Express 18 5512

    [30]

    Uchida A, Heil T, Liu Y, Davis P, Aida T 2003 IEEE J. Quantum Electron. 39 1462

    [31]

    Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [32]

    Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201

    [33]

    Kingni S T, Talla Mb J H, Woafo P 2012 Eur. Phys. J. Plus 127 46

    [34]

    Vicente R, Mirasso C R 2004 Proc. SPIE 5349 331

    [35]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [36]

    Chen Y L, Wu Z M, Tang X, Lin X D, Wei Y, Xia G Q 2013 Acta Phys. Sin. 62 104207 (in Chinese) [陈于淋, 吴正茂, 唐曦, 林晓东, 魏月, 夏光琼 2013 物理学报 62 104207]

    [37]

    Yang X J, Wu J G, Wu Z M, Li Y, Wang L, Xia G Q 2015 Opt. Commun. 336 262

    [38]

    Lin F Y, Chao Y K, Wu T C 2012 IEEE J. Quantum Electron. 48 1010

    [39]

    Tkach R W, Chraplyvy A R 1986 J. Lightwave Technol. 4 1655

  • [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, Garcia-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [2]

    Yan S L 2014 Chin. Phys. B 23 090503

    [3]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [4]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki S, Yoshimori M, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [5]

    Reidler I, Aviad Y, Rosenbluh M, Kantar I 2009 Phys. Rev. Lett. 103 024102

    [6]

    Ohtsubo J 2013 Semiconductor Lasers: Stability, Instability and -Chaos (3rd Ed.) (Berlin: Springer) p26

    [7]

    Vicente R, Dauden J, Colet P, Toral R 2005 IEEE J. Quantum Electron. 41 541

    [8]

    Jafari A, Sedghi H, Mabhouti K, Behnia S 2011 Opt. Commun. 284 3018

    [9]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661

    [10]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [11]

    Zhao Q C, Wang Y C, Wang A B 2009 Appl. Opt. 48 3515

    [12]

    Udaltsov V S, Goedgebuer J P, Larger L, Cuenot J B, Levy P, Rhodes W T 2003 Phys. Lett. A 308 54

    [13]

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679 (in Chinese) [张继兵, 张建忠, 杨毅彪, 梁君生, 王云才 2010 物理学报 59 7679]

    [14]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [15]

    Nguimdo R M, Soriano M C, Colet P 2011 Opt. Lett. 36 4332

    [16]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [17]

    Nguimdo R M, Verschaffelt G, Danckaert J, Sande G V 2012 Opt. Lett. 37 2541

    [18]

    Xiang S Y, Pan W, Zhang L Y, Wen A J, Shang L, Zhang H X, Lin L 2014 Opt. Commun. 324 38

    [19]

    Priyadarshi S, Hong Y H, Pierce I, Shore K A 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700707

    [20]

    Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829

    [21]

    Hong Y H, Spencer P S, Shore K A 2014 IEEE J. Quantum Electron. 50 236

    [22]

    Simpson T B, Liu J M, Gavrielides A 1995 IEEE Photon. Technol. Lett. 7 709

    [23]

    Simpson T B, Liu J M 1997 IEEE Photon. Technol. Lett. 9 1322

    [24]

    Takiguchi Y, Ohyagi K, Ohtsubo J 2003 Opt. Lett. 28 319

    [25]

    Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372 (in Chinese) [王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭萍 2007 物理学报 56 4372]

    [26]

    Wang Y C, Zhang G W, Wang A B 2007 Opt. Commun. 277 156

    [27]

    Wang A B, Wang Y C, He H C 2008 IEEE Photon. Technol. Lett. 20 1633

    [28]

    Someya H, Oowada I, Okumura H, Kida T, Uchida A 2009 Opt. Express 17 19536

    [29]

    Hirano K, Yamazaki T, Morikatsu S, Okumura H, Aida H, Uchida A, Yoshimori S, Yoshimura K, Harayama T, Davis P 2010 Opt. Express 18 5512

    [30]

    Uchida A, Heil T, Liu Y, Davis P, Aida T 2003 IEEE J. Quantum Electron. 39 1462

    [31]

    Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [32]

    Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201

    [33]

    Kingni S T, Talla Mb J H, Woafo P 2012 Eur. Phys. J. Plus 127 46

    [34]

    Vicente R, Mirasso C R 2004 Proc. SPIE 5349 331

    [35]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [36]

    Chen Y L, Wu Z M, Tang X, Lin X D, Wei Y, Xia G Q 2013 Acta Phys. Sin. 62 104207 (in Chinese) [陈于淋, 吴正茂, 唐曦, 林晓东, 魏月, 夏光琼 2013 物理学报 62 104207]

    [37]

    Yang X J, Wu J G, Wu Z M, Li Y, Wang L, Xia G Q 2015 Opt. Commun. 336 262

    [38]

    Lin F Y, Chao Y K, Wu T C 2012 IEEE J. Quantum Electron. 48 1010

    [39]

    Tkach R W, Chraplyvy A R 1986 J. Lightwave Technol. 4 1655

  • [1] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性. 物理学报, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [2] 杨峰, 唐曦, 钟祝强, 夏光琼, 吴正茂. 基于偏振旋转耦合1550 nm垂直腔面发射激光器环形系统产生多路高质量混沌信号. 物理学报, 2016, 65(19): 194207. doi: 10.7498/aps.65.194207
    [3] 杨玲珍, 乔占朵, 邬云翘, 王云才. 掺铒光纤环形激光器混沌带宽特性数值研究. 物理学报, 2010, 59(6): 3965-3972. doi: 10.7498/aps.59.3965
    [4] 颜森林. 交叉相位调制提高半导体激光器混沌载波发射机带宽方法. 物理学报, 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [5] 张依宁, 冯玉玲, 王晓茜, 赵振明, 高超, 姚治海. 半导体激光器混沌输出的延时特征和带宽. 物理学报, 2020, 69(9): 090501. doi: 10.7498/aps.69.20191881
    [6] 王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭 萍. 光注入提高半导体激光器混沌载波发射机的带宽. 物理学报, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [7] 李增, 冯玉玲, 王晓茜, 姚治海. 半导体激光器输出混沌光的延时特性和带宽. 物理学报, 2018, 67(14): 140501. doi: 10.7498/aps.67.20180035
    [8] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [9] 起俊丰, 钟祝强, 王广娜, 夏光琼, 吴正茂. 高斯切趾型光纤布拉格光栅外腔半导体激光器的混沌输出特性. 物理学报, 2017, 66(24): 244207. doi: 10.7498/aps.66.244207
    [10] 邓伟, 夏光琼, 吴正茂. 基于双光反馈垂直腔面发射激光器的双信道混沌同步通信. 物理学报, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [11] 刘庆喜, 潘炜, 张力月, 李念强, 阎娟. 基于外光注入互耦合垂直腔面发射激光器的混沌随机特性研究. 物理学报, 2015, 64(2): 024209. doi: 10.7498/aps.64.024209
    [12] 赵红东, 康志龙, 王胜利, 陈国鹰, 张以谟. 高速调制响应垂直腔面发射激光器中的微腔效应. 物理学报, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
    [13] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计. 物理学报, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [14] 杨 浩, 郭 霞, 关宝璐, 王同喜, 沈光地. 注入电流对垂直腔面发射激光器横模特性的影响. 物理学报, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [15] 郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣, 薄报学. 808nm大孔径垂直腔面发射激光器研究. 物理学报, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [16] 刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地. 氧化孔形状对光子晶体垂直腔面发射激光器模式的影响. 物理学报, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [17] 毛明明, 徐晨, 魏思民, 解意洋, 刘久澄, 许坤. 质子注入能量对垂直腔面发射激光器的阈值和功率的影响. 物理学报, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [18] 关宝璐, 刘欣, 江孝伟, 刘储, 徐晨. 多横模垂直腔面发射激光器及其波长特性. 物理学报, 2015, 64(16): 164203. doi: 10.7498/aps.64.164203
    [19] 周广正, 尧舜, 于洪岩, 吕朝晨, 王青, 周天宝, 李颖, 兰天, 夏宇, 郎陆广, 程立文, 董国亮, 康联鸿, 王智勇. 高速850 nm垂直腔面发射激光器的优化设计与外延生长. 物理学报, 2018, 67(10): 104205. doi: 10.7498/aps.67.20172550
    [20] 张浩, 郭星星, 项水英. 基于单向注入垂直腔面发射激光器系统的密钥分发. 物理学报, 2018, 67(20): 204202. doi: 10.7498/aps.67.20181038
  • 引用本文:
    Citation:
计量
  • 文章访问数:  601
  • PDF下载量:  276
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-13
  • 修回日期:  2015-07-02
  • 刊出日期:  2015-11-20

主副垂直腔面发射激光器动力学系统混沌输出的时延特征及带宽分析

  • 1. 西南大学物理科学与技术学院, 重庆 400715
  • 通信作者: 吴正茂, zmwu@swu.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 61178011, 61275116, 61475127, 11474233, 61575163)、重庆市高等学校青年骨干教师资助计划(批准号: 102060-20600512)和中央高校基本科研业务费专项基金(批准号: XDJK2013B037)资助的课题.

摘要: 基于垂直腔面发射激光器(VCSEL)的自旋反转模型, 数值研究了由一个光反馈VCSEL (定义为主VCSEL, M-VCSEL)输出的混沌光单向注入到另一个VCSEL (定义为副VCSLE, S-VCSEL)所构成的主副VCSELs系统的混沌动力学特性, 分析了注入强度、M-VCSEL与S-VCSEL之间的频率失谐以及M-VCSEL所受到的光反馈强度对系统混沌输出时延特征(包括强度时延特征(I-TDS) 和相位时延特征(P-TDS))以及输出带宽(BW)的影响. 结果显示: 通过调节注入强度和频率失谐, 该系统混沌输出的两个偏振分量(X-PC和Y-PC)的P-TDS和I-TDS可以同时得到抑制; 进一步分析注入强度和频率失谐对混沌BW的影响, 发现在较大负频率失谐区域, 系统可输出BW超过30 GHz 的X-PC和Y-PC混沌信号; 结合系统混沌输出信号的TDS与BW在注入强度和频率失谐参量空间下的演化特性, 可确定宽带宽、低时延特征混沌信号输出的参量空间区域. 此外, 通过合理调节M-VCSEL 所受到的光反馈强度, 可以显著优化系统的混沌输出信号质量.

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回