搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GeS分子基态和低激发态的势能曲线与光谱性质

黄多辉 万明杰 王藩侯 杨俊升 曹启龙 王金花

GeS分子基态和低激发态的势能曲线与光谱性质

黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花
PDF
导出引用
导出核心图
  • 本文以aug-cc-pv5Z为基组, 采用考虑Davidson修正的多参考组态相互作用方法(MRCI+Q)得到了GeS分子基态(X1+)和5个低激发态(11, 11, A1, 15+, 25+)的势能曲线. 计算结果表明: 25+态为排斥态, 其余5个态为束缚态; 6个态有着共同的离解通道, 离解极限均为Ge(3P)+S(3P). 利用计算得到的势能曲线得了X1+, 11-, 11, A1和15+态的垂直跃迁能Te, 平衡键长Re, 离解能De, 谐振频率e, 非谐性常数exe及平衡位置的电偶极矩. X1+态的Re 为2.034 , De 为5.728 eV, e为571.73 cm-1, exe为1.6816 cm-1, 平衡位置的电偶极矩为1.9593 Debye. 激发态11, 11, A1, 15+的Te 依次为25904.81, 26209.22, 32601.19, 43770.26 cm-1; Re依次为2.313, 2.322, 2.188, 2.8790 ; De依次为2.524, 2.487, 1.694, 0.3036 eV, e依次为358.90, 353.08, 376.32, 134.96 cm-1; exe依次为1.2421, 1.2151, 1.6608, 1.9095 cm-1; 平衡位置的电偶极矩依次为1.3178, 1.4719, 1.5917, -1.9785 Debye. 通过求解核运动的薛定谔方程得到了J=0时X1+, 11-, 11, A1和15+态前30个振动态的振动能级Gv和分子常数Bv, 得到的结果和已有的实验值及其他理论值符合较好.
      通信作者: 王藩侯, fanhouwangyibin@163.com
    • 基金项目: 四川省教育厅科研基金(批准号: 13ZA0198)、宜宾市重点科技资助项目(批准号: 2012SF034)和宜宾学院科研项目(批准号: 2013QD10)资助的课题.
    [1]

    Wiley J D, Buckel W J, Braun W, Fehrenbach G W, Himpsel F J, Koch E E 1976 Phys. Rev. B 14 697

    [2]

    Dipankar G, Kalyan K D 2005 J. Phys. Chem. A 109 7207

    [3]

    Singh J P, Bedi R K 1991 Thin Solid Films 199 9

    [4]

    Loferski J J 1956 J. Appl. Phys. 27 777

    [5]

    Parentau M, Carlone M 1990 Phys. Rev. B 41 5227

    [6]

    Xing W, Liu H, Shi D H, Sun J F, Zhu Z L 2013 Acta Phys. Sin. 62 043101 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略 2013 物理学报 62 043101]

    [7]

    Shapiro C V, Gibbs R C, Laubengayer A W 1932 Phys. Rev. 40 354

    [8]

    Magat P, Floch A C L, Lebreton J 1980 J. Phys. B 13 4143

    [9]

    Shetty B J, Krishnakumar S, Balasubramanian T K 2001 J. Mol. Spectrosc. 207 25

    [10]

    Uehara H, Horiai K, Sueoka K, Nakagawa K 1989 Chem. Phys. Lett. 160 149

    [11]

    Uehara H, Horiai K, Ozaki Y, Konno T 1995 J. Mol. Struct. 352-353 395

    [12]

    Coppens P, Smoes S, Drowart J 1967 Trans. Faraday Soc. 63 2140

    [13]

    Ogilvie J F 1996 Mol. Phys. 88 1055

    [14]

    Hoeft J, Lovas F J, Tiemann E, Tischer R, Trring T 1969 Z. Naturforsch 24a 1217

    [15]

    Koppe R, Schnockel H 1990 J. Mol. Struct. 238 429

    [16]

    Leszczynski J, Kwiatkowski J S 1993 J. Phys. Chem. 97 12189

    [17]

    Martin J M L, Sundermann A 2001 J. Chem. Phys. 114 3408

    [18]

    Jalbout A F, Xin-hua L, Abou-Rachid H 2007 J. Quantum. Chem. 107 522

    [19]

    Dutta A, Chattopadhyaya S, Das K K 2001 J. Phys. Chem. A 105 3232

    [20]

    Shi D H 2011 J. Mol. Spectrosc. 269 143

    [21]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure, Constants of Diatomic Molecules (Vol.4) (New York: Van Nostrand Reinhold)

    [22]

    Werner H J, Knowles P J, Amos R D, Bernhardsson A, Berning A, Celani P, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Hampel C, Hetzer G, Korona T, Lindh R, Lloyd A W, McNicholas S J, Manby F R, Meyer W, Mura M E, Nicklass A, Palmieri P,Pitzer R, Rauhut G, Schutz M, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T 2009 MOLPRO, a package of ab initio programs designed by Werner H J, Knowles P J. Version 2009

    [23]

    Le Roy R J 2007 Level 8.0: A Computer Program for Solving the Radial Schrdinger Equation for Bound and Quasibound Levels' University of Waterloo Chemical Physics Research Report No. CP-663

    [24]

    Woon D E, Dunning Jr T H 1993 J. Chem. Phys. 98 1358

    [25]

    Wilson A K, Woon D E, Peterson K A, Dunning T H 1999 J. Chem. Phys. 110 7667

    [26]

    Huang D H, Wang F H, Yang J S, Wan M J, Cao Q L, Yang M C 2014 Acta Phys. Sin. 63 083102 (in Chinese) [黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超 2014 物理学报 63 083102]

    [27]

    Linton C 1980 J. Mol. Spectrosc. 79 90

    [28]

    Balfour W J, Shetty B J 1993 Can. J. Chem. 71 1622

    [29]

    Liu X J, Miao F J, Li R, Zhang C H, Li Q N, Yan B 2015 Acta Phys. Sin. 64 123101 (in Chinese) [刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰 2015 物理学报 64 123101]

    [30]

    Wang M W, Wang B W, Chen Z D 2008 Sci. China: Series B: Chemistry 51 521

    [31]

    Molski M 1999 J. Mol. Spectrosc. 193 244

  • [1]

    Wiley J D, Buckel W J, Braun W, Fehrenbach G W, Himpsel F J, Koch E E 1976 Phys. Rev. B 14 697

    [2]

    Dipankar G, Kalyan K D 2005 J. Phys. Chem. A 109 7207

    [3]

    Singh J P, Bedi R K 1991 Thin Solid Films 199 9

    [4]

    Loferski J J 1956 J. Appl. Phys. 27 777

    [5]

    Parentau M, Carlone M 1990 Phys. Rev. B 41 5227

    [6]

    Xing W, Liu H, Shi D H, Sun J F, Zhu Z L 2013 Acta Phys. Sin. 62 043101 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略 2013 物理学报 62 043101]

    [7]

    Shapiro C V, Gibbs R C, Laubengayer A W 1932 Phys. Rev. 40 354

    [8]

    Magat P, Floch A C L, Lebreton J 1980 J. Phys. B 13 4143

    [9]

    Shetty B J, Krishnakumar S, Balasubramanian T K 2001 J. Mol. Spectrosc. 207 25

    [10]

    Uehara H, Horiai K, Sueoka K, Nakagawa K 1989 Chem. Phys. Lett. 160 149

    [11]

    Uehara H, Horiai K, Ozaki Y, Konno T 1995 J. Mol. Struct. 352-353 395

    [12]

    Coppens P, Smoes S, Drowart J 1967 Trans. Faraday Soc. 63 2140

    [13]

    Ogilvie J F 1996 Mol. Phys. 88 1055

    [14]

    Hoeft J, Lovas F J, Tiemann E, Tischer R, Trring T 1969 Z. Naturforsch 24a 1217

    [15]

    Koppe R, Schnockel H 1990 J. Mol. Struct. 238 429

    [16]

    Leszczynski J, Kwiatkowski J S 1993 J. Phys. Chem. 97 12189

    [17]

    Martin J M L, Sundermann A 2001 J. Chem. Phys. 114 3408

    [18]

    Jalbout A F, Xin-hua L, Abou-Rachid H 2007 J. Quantum. Chem. 107 522

    [19]

    Dutta A, Chattopadhyaya S, Das K K 2001 J. Phys. Chem. A 105 3232

    [20]

    Shi D H 2011 J. Mol. Spectrosc. 269 143

    [21]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure, Constants of Diatomic Molecules (Vol.4) (New York: Van Nostrand Reinhold)

    [22]

    Werner H J, Knowles P J, Amos R D, Bernhardsson A, Berning A, Celani P, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Hampel C, Hetzer G, Korona T, Lindh R, Lloyd A W, McNicholas S J, Manby F R, Meyer W, Mura M E, Nicklass A, Palmieri P,Pitzer R, Rauhut G, Schutz M, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T 2009 MOLPRO, a package of ab initio programs designed by Werner H J, Knowles P J. Version 2009

    [23]

    Le Roy R J 2007 Level 8.0: A Computer Program for Solving the Radial Schrdinger Equation for Bound and Quasibound Levels' University of Waterloo Chemical Physics Research Report No. CP-663

    [24]

    Woon D E, Dunning Jr T H 1993 J. Chem. Phys. 98 1358

    [25]

    Wilson A K, Woon D E, Peterson K A, Dunning T H 1999 J. Chem. Phys. 110 7667

    [26]

    Huang D H, Wang F H, Yang J S, Wan M J, Cao Q L, Yang M C 2014 Acta Phys. Sin. 63 083102 (in Chinese) [黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超 2014 物理学报 63 083102]

    [27]

    Linton C 1980 J. Mol. Spectrosc. 79 90

    [28]

    Balfour W J, Shetty B J 1993 Can. J. Chem. 71 1622

    [29]

    Liu X J, Miao F J, Li R, Zhang C H, Li Q N, Yan B 2015 Acta Phys. Sin. 64 123101 (in Chinese) [刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰 2015 物理学报 64 123101]

    [30]

    Wang M W, Wang B W, Chen Z D 2008 Sci. China: Series B: Chemistry 51 521

    [31]

    Molski M 1999 J. Mol. Spectrosc. 193 244

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1253
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-08
  • 修回日期:  2016-01-07
  • 刊出日期:  2016-03-05

GeS分子基态和低激发态的势能曲线与光谱性质

  • 1. 宜宾学院 计算物理四川省高等学校重点实验室, 宜宾 644000
  • 通信作者: 王藩侯, fanhouwangyibin@163.com
    基金项目: 

    四川省教育厅科研基金(批准号: 13ZA0198)、宜宾市重点科技资助项目(批准号: 2012SF034)和宜宾学院科研项目(批准号: 2013QD10)资助的课题.

摘要: 本文以aug-cc-pv5Z为基组, 采用考虑Davidson修正的多参考组态相互作用方法(MRCI+Q)得到了GeS分子基态(X1+)和5个低激发态(11, 11, A1, 15+, 25+)的势能曲线. 计算结果表明: 25+态为排斥态, 其余5个态为束缚态; 6个态有着共同的离解通道, 离解极限均为Ge(3P)+S(3P). 利用计算得到的势能曲线得了X1+, 11-, 11, A1和15+态的垂直跃迁能Te, 平衡键长Re, 离解能De, 谐振频率e, 非谐性常数exe及平衡位置的电偶极矩. X1+态的Re 为2.034 , De 为5.728 eV, e为571.73 cm-1, exe为1.6816 cm-1, 平衡位置的电偶极矩为1.9593 Debye. 激发态11, 11, A1, 15+的Te 依次为25904.81, 26209.22, 32601.19, 43770.26 cm-1; Re依次为2.313, 2.322, 2.188, 2.8790 ; De依次为2.524, 2.487, 1.694, 0.3036 eV, e依次为358.90, 353.08, 376.32, 134.96 cm-1; exe依次为1.2421, 1.2151, 1.6608, 1.9095 cm-1; 平衡位置的电偶极矩依次为1.3178, 1.4719, 1.5917, -1.9785 Debye. 通过求解核运动的薛定谔方程得到了J=0时X1+, 11-, 11, A1和15+态前30个振动态的振动能级Gv和分子常数Bv, 得到的结果和已有的实验值及其他理论值符合较好.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回