搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金纳米棒三聚体中的等离激元诱导透明

马平平 张杰 刘焕焕 张静 徐永刚 王江 张梦桥 李永放

金纳米棒三聚体中的等离激元诱导透明

马平平, 张杰, 刘焕焕, 张静, 徐永刚, 王江, 张梦桥, 李永放
PDF
导出引用
  • 基于金纳米棒构成的三聚体微元结构模型,详细地研究了等离激元诱导透明(plasmon induced transparency,PIT)现象产生的物理过程.研究发现,三聚体的吸收谱线随着其耦合距离以及尺寸的变化,竖直金纳米棒所对应的偶极明模在平行双长条金纳米棒对应的暗模作用下会产生分裂.依据这一结果提出了一个新的物理解释,PIT现象的产生主要来自于竖直金纳米棒中偶极振荡的模式分裂后的相干叠加.同时,考虑到两个振子之间的耦合会伴随着一定的相位关联性,进而引入了耦合相位因子修正了洛伦兹振子耦合模型,解析地研究了耦合相位因子对吸收谱的调控作用和分裂明模之间的相干叠加效应对PIT效应的影响.这为在纳米尺寸范围设计人造原子、光开关、慢光效应等方面的应用提供了理论参考.
      通信作者: 李永放, yfli@snnu.edu.cn
    [1]

    Brongersma M L, Kik P G 2007 Surface Plasmon Nanophotonics (Berlin:Springer)

    [2]

    Pacifici D, Lezec H J, Atwater H A 2007 Nat. Photon. 1 402

    [3]

    Linden S, Enkrich C, Wegener M, Zhou J, Koschny T, Soukoulis C M 2004 Science 306 1351

    [4]

    Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M, Brueck S R J 2005 Phys. Rev. Lett. 95 137404

    [5]

    Ha T, Enderle T, Ogletree D F, Chemla D S, Selvin P R, Weiss S 1996 Proc. Natl. Acad. Sci. U S A 93 6264

    [6]

    Nie S, Emory S R 1997 Science 275 1102

    [7]

    Butet J, Martin O J F 2014 Opt. Express 22 29693

    [8]

    Butet J, Dutta-Gupta S, Martin O J F 2014 Phys. Rev. B 89 245449

    [9]

    Thyagarajan K, Butet J, Martin O J F 2013 Nano Lett. 13 1847

    [10]

    Li J, Liu T, Zheng H, Dong J, He E, Gao W, Wu Y 2014 Plasmonics 9 1439

    [11]

    Hao F, Sonnefraud Y, Dorpe P V, Maier S A, Halas N J, Nordlander P 2008 Nano Lett. 8 3983

    [12]

    Jain P K, Huang X, El-Sayed I H, El-Sayed M A 2007 Plasmonics 2 107

    [13]

    Dong Z G, Liu H, Cao J X, Li T, Wang S M, Zhu S N, Zhang X 2010 Appl. Phys. Lett. 97 114101

    [14]

    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Giessen H 2009 Opt. Express 17 15372

    [15]

    Artar A, Yanik A A, Altug H 2011 Nano Lett. 11 1685

    [16]

    Sadeghi S M, Deng L, Li X, Huang W P 2009 Nanotechnology 20 365401

    [17]

    Wang W, Li Y, Xu P, Chen Z, Chen J, Qian J, Xu J 2014 J. Opt. 16 125013

    [18]

    Chen J, Wang P, Chen C, Lu Y, Ming H, Zhan Q 2011 Opt. Express 19 5970

    [19]

    Harris S E 2008 Phys. Today 50 36

    [20]

    Ham B S, Shahriar M S, Hemmer P R 1997 Opt. Lett. 22 1138

    [21]

    Phillips M, Wang H 2002 Phys. Rev. Lett. 89 186401

    [22]

    Maleki L, Matsko A B, Savchenkov A A, Ilchenko V S 2004 Opt. Lett. 29 626

    [23]

    Ham B S, Hahn J 2009 Appl. Phys. Lett. 94 101110

    [24]

    Gan Q, Fu Z, Ding Y J, Bartoli F J 2008 Phys. Rev. Lett 100 256803

    [25]

    Wang G, Lu H, Liu X 2012 Appl. Phys. Lett. 101 013111

    [26]

    Wei H, Wang Z, Tian X, Käll M, Xu H 2011 Nat. Commun. 2 387

    [27]

    Totsuka K, Kobayashi N, Tomita M 2007 Phys. Rev. Lett. 98 213904

    [28]

    Xu H, Ham B S 2008 Phys. Rev. Lett. 101 047401

    [29]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [30]

    Liu T, Li J, Gao F, Han Q, Liu S 2013 Europhys. Lett. 104 47009

    [31]

    Mhlschlegel P, Eisler H J, Martin O J F, Hecht, Pohl D W 2005 Science 308 1607

    [32]

    Xu H, Lu Y, Lee Y, Ham B S 2010 Opt. Express 18 17736

  • [1]

    Brongersma M L, Kik P G 2007 Surface Plasmon Nanophotonics (Berlin:Springer)

    [2]

    Pacifici D, Lezec H J, Atwater H A 2007 Nat. Photon. 1 402

    [3]

    Linden S, Enkrich C, Wegener M, Zhou J, Koschny T, Soukoulis C M 2004 Science 306 1351

    [4]

    Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M, Brueck S R J 2005 Phys. Rev. Lett. 95 137404

    [5]

    Ha T, Enderle T, Ogletree D F, Chemla D S, Selvin P R, Weiss S 1996 Proc. Natl. Acad. Sci. U S A 93 6264

    [6]

    Nie S, Emory S R 1997 Science 275 1102

    [7]

    Butet J, Martin O J F 2014 Opt. Express 22 29693

    [8]

    Butet J, Dutta-Gupta S, Martin O J F 2014 Phys. Rev. B 89 245449

    [9]

    Thyagarajan K, Butet J, Martin O J F 2013 Nano Lett. 13 1847

    [10]

    Li J, Liu T, Zheng H, Dong J, He E, Gao W, Wu Y 2014 Plasmonics 9 1439

    [11]

    Hao F, Sonnefraud Y, Dorpe P V, Maier S A, Halas N J, Nordlander P 2008 Nano Lett. 8 3983

    [12]

    Jain P K, Huang X, El-Sayed I H, El-Sayed M A 2007 Plasmonics 2 107

    [13]

    Dong Z G, Liu H, Cao J X, Li T, Wang S M, Zhu S N, Zhang X 2010 Appl. Phys. Lett. 97 114101

    [14]

    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Giessen H 2009 Opt. Express 17 15372

    [15]

    Artar A, Yanik A A, Altug H 2011 Nano Lett. 11 1685

    [16]

    Sadeghi S M, Deng L, Li X, Huang W P 2009 Nanotechnology 20 365401

    [17]

    Wang W, Li Y, Xu P, Chen Z, Chen J, Qian J, Xu J 2014 J. Opt. 16 125013

    [18]

    Chen J, Wang P, Chen C, Lu Y, Ming H, Zhan Q 2011 Opt. Express 19 5970

    [19]

    Harris S E 2008 Phys. Today 50 36

    [20]

    Ham B S, Shahriar M S, Hemmer P R 1997 Opt. Lett. 22 1138

    [21]

    Phillips M, Wang H 2002 Phys. Rev. Lett. 89 186401

    [22]

    Maleki L, Matsko A B, Savchenkov A A, Ilchenko V S 2004 Opt. Lett. 29 626

    [23]

    Ham B S, Hahn J 2009 Appl. Phys. Lett. 94 101110

    [24]

    Gan Q, Fu Z, Ding Y J, Bartoli F J 2008 Phys. Rev. Lett 100 256803

    [25]

    Wang G, Lu H, Liu X 2012 Appl. Phys. Lett. 101 013111

    [26]

    Wei H, Wang Z, Tian X, Käll M, Xu H 2011 Nat. Commun. 2 387

    [27]

    Totsuka K, Kobayashi N, Tomita M 2007 Phys. Rev. Lett. 98 213904

    [28]

    Xu H, Ham B S 2008 Phys. Rev. Lett. 101 047401

    [29]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [30]

    Liu T, Li J, Gao F, Han Q, Liu S 2013 Europhys. Lett. 104 47009

    [31]

    Mhlschlegel P, Eisler H J, Martin O J F, Hecht, Pohl D W 2005 Science 308 1607

    [32]

    Xu H, Lu Y, Lee Y, Ham B S 2010 Opt. Express 18 17736

  • [1] 赵军龙, 张译丹, 杨名. 噪声对一种三粒子量子探针态的影响. 物理学报, 2018, 67(14): 140302. doi: 10.7498/aps.67.20180040
    [2] 应纯同, 魏晓峰, 朱启华, 刘红婕, 王 逍, 黄 征, 郭 仪, 左言磊. 基于配对误差补偿方法的拼接光栅压缩池理论研究. 物理学报, 2007, 56(9): 5227-5232. doi: 10.7498/aps.56.5227
    [3] 李琴, 郭红. 宽频脉冲光的传播特性. 物理学报, 2011, 60(5): 054204. doi: 10.7498/aps.60.054204
    [4] 胡宝晶, 黄铭, 黎鹏, 杨成福. 基于纳米盘棒耦合的多频段等离激元诱导透明研究. 物理学报, 2020, 69(13): 134202. doi: 10.7498/aps.69.20200093
    [5] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明. 物理学报, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [6] 李爱云, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 对称纳米棒三聚体结构的Fano共振特性研究. 物理学报, 2019, 68(19): 197801. doi: 10.7498/aps.68.20190978
    [7] 朱华, 颜振东, 詹鹏, 王振林. 局域表面等离激元诱导的三次谐波增强效应. 物理学报, 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
    [8] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [9] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究. 物理学报, 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [10] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析. 物理学报, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [11] 张兴坊, 闫昕. 金纳米球壳表面等离激元共振波长调谐特性研究. 物理学报, 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [12] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性. 物理学报, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [13] 丛超, 吴大建, 刘晓峻, 李勃. 金银三层纳米管局域表面等离激元共振特性研究. 物理学报, 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [14] 尹海峰, 张红, 岳莉. C60富勒烯二聚物的等离激元激发. 物理学报, 2014, 63(12): 127303. doi: 10.7498/aps.63.127303
    [15] 王晓, 蔡建华. 三维紧束缚电子气的等离激元理论. 物理学报, 1993, 42(7): 1149-1156. doi: 10.7498/aps.42.1149
    [16] 王晓;蔡建华. 三维紧束缚电子气的等离激元理论. 物理学报, 1991, 40(7): 1149-1156. doi: 10.7498/aps.40.1149
    [17] 王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 基于多阶等离激元谐振的超薄多频带超材料吸波体. 物理学报, 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
    [18] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [19] 王垒, 蔡卫, 谭信辉, 向吟啸, 张心正, 许京军. 截面形状对快电子激发纳米双线表面等离激元的影响. 物理学报, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
    [20] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
  • 引用本文:
    Citation:
计量
  • 文章访问数:  801
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-30
  • 修回日期:  2016-08-05
  • 刊出日期:  2016-11-05

金纳米棒三聚体中的等离激元诱导透明

  • 1. 陕西师范大学物理学与信息技术学院, 西安 710119
  • 通信作者: 李永放, yfli@snnu.edu.cn

摘要: 基于金纳米棒构成的三聚体微元结构模型,详细地研究了等离激元诱导透明(plasmon induced transparency,PIT)现象产生的物理过程.研究发现,三聚体的吸收谱线随着其耦合距离以及尺寸的变化,竖直金纳米棒所对应的偶极明模在平行双长条金纳米棒对应的暗模作用下会产生分裂.依据这一结果提出了一个新的物理解释,PIT现象的产生主要来自于竖直金纳米棒中偶极振荡的模式分裂后的相干叠加.同时,考虑到两个振子之间的耦合会伴随着一定的相位关联性,进而引入了耦合相位因子修正了洛伦兹振子耦合模型,解析地研究了耦合相位因子对吸收谱的调控作用和分裂明模之间的相干叠加效应对PIT效应的影响.这为在纳米尺寸范围设计人造原子、光开关、慢光效应等方面的应用提供了理论参考.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回