搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于频域电磁场的微波器件微放电阈值快速粒子模拟

王洪广 翟永贵 李记肖 李韵 王瑞 王新波 崔万照 李永东

基于频域电磁场的微波器件微放电阈值快速粒子模拟

王洪广, 翟永贵, 李记肖, 李韵, 王瑞, 王新波, 崔万照, 李永东
PDF
导出引用
  • 提出了一种利用频域电磁场快速计算微波器件微放电阈值的粒子模拟方法.首先通过CST微波工作室频域求解器获得微波器件中频域电磁场分布,在微放电过程模拟时将其转换到时域,再采用Boris算法求解电磁场中的电子运动,然后判断电子是否与三角面片边界相交,进行二次电子发射处理.变化输入功率,经过系列粒子模拟后,根据电子数目随时间的变化曲线确定微放电阈值.采用该方法分别对平行平板和同轴传输线微波器件的微放电阈值进行模拟计算,并与CST粒子工作室的模拟结果进行对比.结果表明,两者获得的阈值基本一致,但本方法的计算效率提高了12个数量级.
      通信作者: 李永东, leyond@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:U1537210)和空间微波技术重点实验室基金(批准号:9140C530101150C53011)资助的课题.
    [1]

    Vaughan J R M 1988 IEEE Trans. Electron Dev. 35 1172

    [2]

    Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120

    [3]

    Ang L K, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290

    [4]

    Nieter C, Stoltz P H, Roark C, Mahalingam S 2010 AIP Conf. Proc. 1299 399

    [5]

    Gill E W B, Engel A V 1948 Proc. Roy. Soc. London A 192 446

    [6]

    Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580

    [7]

    Anza S, Vicente C, Gil J, Boria V E, Gimeno B, Raboso D 2010 Phys. Plasmas 17 062110

    [8]

    Sazontov A G, Sazontov V A, Vdovicheva N K 2008 Contrib. Plasma Phys. 48 331

    [9]

    Udiljak R, Anderson D, Lisak M, Semenov V E, Puech J 2007 Phys. Plasmas 14 033508

    [10]

    Lin S, Wang H G, Li Y, Liu C L, Zhang N, Cui W Z, Neuber A 2015 Phys. Plasmas 22 082114

    [11]

    Kishek R A, Lau Y Y 1998 Phy. Rev. Lett. 80 193

    [12]

    Birdsall C K, Langdon A B 1984 Plasma Physics via Computer Simulation (New York:McGraw Hill Higher Education) pp1-400

    [13]

    Goplen B, Ludeking L, Smithe D, Warren G 1995 Comput. Phys. Commun. 87 54

    [14]

    Nieter C, Cary J R 2004 J. Comput. Phys. 196 448

    [15]

    Computer Simulation Technology (CST) Center 2012 Framingham M A 2009 High Power Laser and Particle Beams 21 1866 (in Chinese)[李永东, 王洪广, 刘纯亮,张殿辉,王建国,王玥2009强激光与粒子束21 1866]

    [16]

    Li Y, Cui W Z, Wang H G 2015 Phys. Plasmas 22 053108

    [17]

    You J W, Wang H G, Zhang J F, Tan S R, Cui T J 2014 IEEE Trans. Electron Dev. 61 1546

    [18]

    Dong Y, Dong Z W, Yang W Y 2011 High Power Laser and Particle Beams 23 454 (in Chinese)[董烨, 董志伟, 杨文渊2011强激光与粒子束23 454]

    [19]

    Liu L Q, Liu D G, Wang X Q, Peng K, Yang C 2012 High Power Laser and Particle Beams 24 1980 (in Chinese)[刘腊群, 刘大刚, 王学琼, 彭凯, 杨超2012强激光与粒子束24 1980]

    [20]

    Boris J P 1970 Proceedings of the Fourth Conference on Numerical Simulation of Plasmas Washington, USA, November 2-3, 1970 p3

    [21]

    Möller T, Trumbore B 1997 J. Graph. Tool. 2 21

    [22]

    Vaughan J R M 1989 IEEE Trans. Electron Dev. 36 1963

    [23]

    Furman M A, Pivi M T F 2002 Phys. Rev. ST Accel. 5 124404

    [24]

    Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese)[李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮2014物理学报63 047902]

    [25]

    Liu L, Li Y D, Wang R, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 025201 (in Chinese)[刘雷, 李永东, 王瑞, 崔万照, 刘纯亮2013物理学报62 025201]

  • [1]

    Vaughan J R M 1988 IEEE Trans. Electron Dev. 35 1172

    [2]

    Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120

    [3]

    Ang L K, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290

    [4]

    Nieter C, Stoltz P H, Roark C, Mahalingam S 2010 AIP Conf. Proc. 1299 399

    [5]

    Gill E W B, Engel A V 1948 Proc. Roy. Soc. London A 192 446

    [6]

    Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580

    [7]

    Anza S, Vicente C, Gil J, Boria V E, Gimeno B, Raboso D 2010 Phys. Plasmas 17 062110

    [8]

    Sazontov A G, Sazontov V A, Vdovicheva N K 2008 Contrib. Plasma Phys. 48 331

    [9]

    Udiljak R, Anderson D, Lisak M, Semenov V E, Puech J 2007 Phys. Plasmas 14 033508

    [10]

    Lin S, Wang H G, Li Y, Liu C L, Zhang N, Cui W Z, Neuber A 2015 Phys. Plasmas 22 082114

    [11]

    Kishek R A, Lau Y Y 1998 Phy. Rev. Lett. 80 193

    [12]

    Birdsall C K, Langdon A B 1984 Plasma Physics via Computer Simulation (New York:McGraw Hill Higher Education) pp1-400

    [13]

    Goplen B, Ludeking L, Smithe D, Warren G 1995 Comput. Phys. Commun. 87 54

    [14]

    Nieter C, Cary J R 2004 J. Comput. Phys. 196 448

    [15]

    Computer Simulation Technology (CST) Center 2012 Framingham M A 2009 High Power Laser and Particle Beams 21 1866 (in Chinese)[李永东, 王洪广, 刘纯亮,张殿辉,王建国,王玥2009强激光与粒子束21 1866]

    [16]

    Li Y, Cui W Z, Wang H G 2015 Phys. Plasmas 22 053108

    [17]

    You J W, Wang H G, Zhang J F, Tan S R, Cui T J 2014 IEEE Trans. Electron Dev. 61 1546

    [18]

    Dong Y, Dong Z W, Yang W Y 2011 High Power Laser and Particle Beams 23 454 (in Chinese)[董烨, 董志伟, 杨文渊2011强激光与粒子束23 454]

    [19]

    Liu L Q, Liu D G, Wang X Q, Peng K, Yang C 2012 High Power Laser and Particle Beams 24 1980 (in Chinese)[刘腊群, 刘大刚, 王学琼, 彭凯, 杨超2012强激光与粒子束24 1980]

    [20]

    Boris J P 1970 Proceedings of the Fourth Conference on Numerical Simulation of Plasmas Washington, USA, November 2-3, 1970 p3

    [21]

    Möller T, Trumbore B 1997 J. Graph. Tool. 2 21

    [22]

    Vaughan J R M 1989 IEEE Trans. Electron Dev. 36 1963

    [23]

    Furman M A, Pivi M T F 2002 Phys. Rev. ST Accel. 5 124404

    [24]

    Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese)[李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮2014物理学报63 047902]

    [25]

    Liu L, Li Y D, Wang R, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 025201 (in Chinese)[刘雷, 李永东, 王瑞, 崔万照, 刘纯亮2013物理学报62 025201]

  • [1] 新波, 张小宁, 李韵, 崔万照, 张洪太, 李永东, 王洪广, 翟永贵, 刘纯亮. 多载波微放电阈值的粒子模拟及分析. 物理学报, 2017, 66(15): 157901. doi: 10.7498/aps.66.157901
    [2] 白春江, 封国宝, 崔万照, 贺永宁, 张雯, 胡少光, 叶鸣, 胡天存, 黄光荪, 王琪. 铝阳极氧化的多孔结构抑制二次电子发射的研究. 物理学报, 2018, 67(3): 037902. doi: 10.7498/aps.67.20172243
    [3] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟. 物理学报, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [4] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅱ)——数值模拟与结果讨论. 物理学报, 2006, 55(11): 5935-5941. doi: 10.7498/aps.55.5935
    [5] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅰ)——物理模型与理论方法. 物理学报, 2006, 55(11): 5930-5934. doi: 10.7498/aps.55.5930
    [6] 陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉. 基于粒子模拟和并行遗传算法的高功率微波源优化设计. 物理学报, 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [7] 陈兆权, 殷志祥, 陈明功, 刘明海, 徐公林, 胡业林, 夏广庆, 宋晓, 贾晓芬, 胡希伟. 负偏压离子鞘及气体压强影响表面波放电过程的粒子模拟. 物理学报, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [8] 简广德, 董家齐. 环形等离子体中电子温度梯度不稳定性的粒子模拟. 物理学报, 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
    [9] 刘雷, 李永东, 王瑞, 崔万照, 刘纯亮. 微波阶梯阻抗变换器低气压电晕放电粒子模拟. 物理学报, 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [10] 王宬朕, 董全力, 刘苹, 吴奕莹, 盛政明, 张杰. 激光等离子体中高能电子各向异性压强的粒子模拟. 物理学报, 2017, 66(11): 115203. doi: 10.7498/aps.66.115203
    [11] 杨文晋, 李永东, 刘纯亮. 高入射能量下的金属二次电子发射模型. 物理学报, 2013, 62(8): 087901. doi: 10.7498/aps.62.087901
    [12] 胡晶, 曹猛, 李永东, 林舒, 夏宁. 微米量级表面结构形貌特性对二次电子发射抑制的优化. 物理学报, 2018, 67(17): 177901. doi: 10.7498/aps.67.20180466
    [13] 王新波, 李永东, 崔万照, 李韵, 张洪太, 张小宁, 刘纯亮. 基于临界电子密度的多载波微放电全局阈值分析. 物理学报, 2016, 65(4): 047901. doi: 10.7498/aps.65.047901
    [14] 赵晓云, 张丙开, 王春晓, 唐义甲. 电子的非广延分布对等离子体鞘层中二次电子发射的影响. 物理学报, 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [15] 王丹, 叶鸣, 冯鹏, 贺永宁, 崔万照. 激光刻蚀对镀金表面二次电子发射的有效抑制. 物理学报, 2019, 68(6): 067901. doi: 10.7498/aps.68.20181547
    [16] 李永东, 杨文晋, 张娜, 崔万照, 刘纯亮. 一种二次电子发射的复合唯象模型. 物理学报, 2013, 62(7): 077901. doi: 10.7498/aps.62.077901
    [17] 林舒, 闫杨娇, 李永东, 刘纯亮. 微波器件微放电阈值计算的蒙特卡罗方法研究. 物理学报, 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [18] 张娜, 曹猛, 崔万照, 胡天存, 王瑞, 李韵. 金属规则表面形貌影响二次电子产额的解析模型. 物理学报, 2015, 64(20): 207901. doi: 10.7498/aps.64.207901
    [19] 郑飞腾, 杨中海, 金晓林. 空心阴极类火花放电初始电离过程的PIC/MCC模拟. 物理学报, 2008, 57(2): 990-995. doi: 10.7498/aps.57.990
    [20] 石磊, 钱沐杨, 肖坤祥, 黎明. 低气压条件下氢气潘宁放电的模拟分析. 物理学报, 2013, 62(17): 175205. doi: 10.7498/aps.62.175205
  • 引用本文:
    Citation:
计量
  • 文章访问数:  993
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-19
  • 修回日期:  2016-09-04
  • 刊出日期:  2016-12-05

基于频域电磁场的微波器件微放电阈值快速粒子模拟

  • 1. 西安交通大学, 电子物理与器件教育部重点实验室, 西安 710049;
  • 2. 北京真空电子技术研究所, 北京 100015;
  • 3. 中国空间技术研究院西安分院, 空间微波技术重点实验室, 西安 710100
  • 通信作者: 李永东, leyond@mail.xjtu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:U1537210)和空间微波技术重点实验室基金(批准号:9140C530101150C53011)资助的课题.

摘要: 提出了一种利用频域电磁场快速计算微波器件微放电阈值的粒子模拟方法.首先通过CST微波工作室频域求解器获得微波器件中频域电磁场分布,在微放电过程模拟时将其转换到时域,再采用Boris算法求解电磁场中的电子运动,然后判断电子是否与三角面片边界相交,进行二次电子发射处理.变化输入功率,经过系列粒子模拟后,根据电子数目随时间的变化曲线确定微放电阈值.采用该方法分别对平行平板和同轴传输线微波器件的微放电阈值进行模拟计算,并与CST粒子工作室的模拟结果进行对比.结果表明,两者获得的阈值基本一致,但本方法的计算效率提高了12个数量级.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回