搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锯齿型碳纳米管的结构衍生及电子特性

刘雅楠 路俊哲 祝恒江 唐宇超 林响 刘晶 王婷

引用本文:
Citation:

锯齿型碳纳米管的结构衍生及电子特性

刘雅楠, 路俊哲, 祝恒江, 唐宇超, 林响, 刘晶, 王婷

Structural derivative and electronic properties of zigzag carbon nanotubes

Liu Ya-Nan, Lu Jun-Zhe, Zhu Heng-Jiang, Tang Yu-Chao, Lin Xiang, Liu Jing, Wang Ting
PDF
导出引用
  • 利用密度泛函理论研究锯齿型单、双壁碳纳米管从核到管状团簇直至纳米管的逐层结构衍生.研究结果表明五边形结构在管状团簇生长中发挥关键作用.此外,基于管状团簇的研究,运用周期性边界条件得到锯齿型单、双壁碳纳米管,并通过计算能带和态密度研究其电子特性.对单壁(n,0)和双壁(n,0)@(2 n,0)碳纳米管,当n=3q(q为整数)时,具有金属或窄带隙半导体特性;n3q时,具有较宽带隙半导体特性,且带隙随管径的增加而减小.然而,小管径碳纳米管受曲率效应的明显影响,n3q的(4,0),(4,0)@(8,0)和(5,0)@(10,0)均呈现金属性;n=3q的(6,0)@(12,0)则表现出明显的半导体特性.
    It is well known that carbon nanotubes (CNTs) have received much attention since they were discovered. With the rapid development of carbon-based electronics and quantum computers, CNTs are required to have their unique physical and chemical properties in many fields. However, due to their uncertain mechanism of growth, it is difficult to achieve high production of CNTs with certain controlled structures. In this paper, we construct the nuclei of specific single- and double-walled zigzag CNTs and study their structural derivatives and electronic properties by using the density functional theory. According to the study of carbon clusters, we find some stable cage-like clusters containing zigzag structure which can be used as the nucleus of the corresponding single-walled CNTs. The nucleus of the double-walled CNTs is composed of the corresponding nucleus of single-walled CNTs. It is possible to obtain a tubular cluster by optimizing the structure of the nucleus with accumulating carbon atoms at one end. The results show that the pentagonal structure plays a key role in the growing of tubular clusters. We find that the tubular clusters are grown in the form of global reconstruction when the clusters are short, but grown by local reconstruction when the clusters are longer. It can provide a theoretical reference to realize numerous CNTs with certain structures. Furthermore, the average binding energy (Eb) of tubular clusters is studied, and we find that their Eb is more and more stable and then close to the corresponding CNTs. At the same time, the study of the thermodynamic quantities of tubular clusters shows that their structures are thermodynamically stable. In addition, the infinite zigzag CNTs can be obtained by using the periodic boundary conditions. Furthermore, the energy bands and density of states are calculated to study their electronic properties. The results show that the energy band structures of zigzag CNTs are closely related to the chiral index n. For zigzag CNTs (n, 0) and (n, 0)@(2n, 0), they show a metal property or narrow band gap semiconductor when n=3q (q is an integer); when n3q, they show a wide band gap semiconductor, and the band gap decreases with the diameter increasing. It is interesting that the two metallic single-walled CNTs (SWCNTs) are nested to obtain metallic double-walled (CNTs) DWCNTs, while the two semiconducting SWCNTs are nested to obtain semiconducting DWCNTs. However, due to the obvious curvature effect, small-diameter CNTs (4, 0), (4, 0)@(8, 0) and (5, 0)@(10, 0) show the metal properties but CNT (6, 0)@(12, 0) shows the obvious semiconductor property.
      通信作者: 祝恒江, zhj@xjnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11464044)和新疆矿物发光材料及其微结构自治区教育厅普通本科高校重点实验室(批准号:KWFG1506)资助的课题.
      Corresponding author: Zhu Heng-Jiang, zhj@xjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11464044) and the Mineral Luminescence Materials and their microstructures of Xinjiang Key Laboratory at University of Education Department of Xinjiang Uygur Autonomous Region of China (Grant No. KWFG1506).
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Iijima S, Ichihashi T 1993 Nature 364 603

    [3]

    Peng L M, Zhang Z L, Xue Z Q, Wu Q D, Gu Z N, Pettifor D G 2000 Phys. Rev. Lett. 85 3249

    [4]

    Rao A M, Richter E, Bandow S, Chase B, Eklund P C, Williams K A, Fang S, Subbaswamy K R, Menon M, Thess A, Smalley R E, Dresselhaus G, Dresselhaus M S 1997 Science 275 187

    [5]

    Alvarez L, Righi A, Guillard T, Rolsa S, Anglareta E, Laplazea D, Sauvajolaet J L 2000 Chem. Phys. Lett. 316 186

    [6]

    Burda C, Chen X B, Narayanan R, El-Sayed M A 2005 Chem. Rev. 105 1025

    [7]

    Che J, Cagin T, Goddard W 2000 Nat. Nanotech. 11 2083

    [8]

    Gong X F, Wang Y, Ning X J 2008 Chin. Phys. Lett. 25 468

    [9]

    Wang X, Zheng F, Lu J, Bai J M, Wang Y, Wei F L 2011 Acta Phys. Sin. 60 017505 (in Chinese) [王璇, 郑富, 芦佳, 白建民, 王颖, 魏福林 2011 物理学报 60 017505]

    [10]

    Fan J, Wan M, Zhu D, Chang B, Pan Z, Xie S 1999 J. Appl. Polym. Sci. 74 2605

    [11]

    Kuzumaki T, Ujiie O, Ichinose H, Ito K 2000 Adv. Eng. Mater. 2 416

    [12]

    Service R F 1999 Science 285 682

    [13]

    Collins P G 1997 Science 278 100

    [14]

    Tans S J, Verschueren A R M, Dekker C 1998 Nature 393 49

    [15]

    Ma W, Liu L, Yang R, Zhang T, Zhang Z, Song L, Ren Y, Shen J, Niu Z, Zhou W, Xie S 2009 Adv. Mater. 21 603

    [16]

    Lin Y M, Appenzeller J, Chen Z, Chen Z G 2005 IEEE Electr. Dev. Lett. 26 823

    [17]

    Ding L, Tselev A, Wang J, Yuan D, Chu H, McNicholas T P, Li Y, Liu J 2009 Nano Lett. 9 800

    [18]

    de Volder M F, Tawfick S H, Baughman R H, Hart A J 2013 Science 339 535

    [19]

    Shulaker M M, Hills G, Patil N, Wei H, Chen H Y, Wong H S, Mitra S 2013 Nature 501 526

    [20]

    Hatta N, Murata K 1994 Chem. Phys. Lett. 217 393

    [21]

    Morales A M, Lieber C M 1998 Science 279 208

    [22]

    Ajayan P M 1999 Chem. Rev. 99 1787

    [23]

    Popov V N 2004 New J. Phys. 6 279

    [24]

    Odom T W, Huang J L, Kim P, Lieber C M 2000 J. Phys. Chem. B 104 2794

    [25]

    Zhao J, Park H, Han J, Lu J P 2004 J. Phys. Chem. B 108 4227

    [26]

    Ding J W, Yan X H, Cao J X, Yang B Q 2003 J. Phys.:-Condens. Matter 15 L439

    [27]

    Fischer J E, Johnson A T 1999 Curr. Opin. Solid St. M. 4 28

    [28]

    Luo J H, Zhang X B, Yu L, Cheng J P, Mi Y H, Liu F 2006 J. Mater. Sci.-Eng. 24 561 (in Chinese) [罗君航, 张孝彬, 李昱, 程继鹏,糜裕宏, 刘芙 2005 材料科学与工程学报 24 561]

    [29]

    Liu B C, Lyu S C, Jung S I, Kang H K, Yang C W, Park J W, Park C Y, Lee C J 2004 Chem. Phys. Lett. 383 104

    [30]

    Cheng H M, Li F, Su G, Pan H Y, He L L, Sun X, Dresselhaus M S 1998 Appl. Phys. Lett. 72 3282

    [31]

    Yao Y, Feng C, Zhang J, Yao Y G, Feng C Q, Zhang J, Liu Z F 2009 Nano Lett. 9 1673

    [32]

    Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang J Q, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y 2014 Nature 510 522

    [33]

    Yang F, Wang X, Zhang D, Qi K, Yang J, Xu Z, Li M, Zhao X, Bai X, Li Y 2015 J. Am. Chem. Soc. 137 8688

    [34]

    Yang F, Wang X, Li M, Liu X, Zhao X, Zhang D, Zhang Y, Yang J, Li Y 2016 Acc. Chem. Res. 49 606

    [35]

    Kiang C H 2000 J. Chem. Phys. 113 4763

    [36]

    Yu X, Zhang J, Choi W, Choi J Y, Kim J M, Gan L, Liu Z 2010 Nano Lett. 10 3343

    [37]

    Lu X X, Hu Z 2012 Compos. Part B: Eng. 43 1902

    [38]

    An W, Shao N, Bulusu S, Zeng X C 2008 J. Chem. Phys. 128 084301

    [39]

    Jensen F, Toftlund H 1993 Chem. Phys. Lett. 201 89

    [40]

    Jensen F, Koch H 1998 J. Chem. Phys. 108 3213

    [41]

    Wu H S, Jia J F, Xu X H 2004 Acta Chim. Sin. 62 105

    [42]

    Galli G, Gygi F, Golaz J C 1998 Phys. Rev. B 57 1860

    [43]

    Chen Z, Heine T, Jiao H, Hirsch A, Thiel W, Schleyer P 2004 Chem.-Eur. J. 10 963

    [44]

    Lu X, Chen Z 2006 Chem. Rev. 105 3643

    [45]

    Jin Y F, Hao C 2005 J. Phys. Chem. A 109 2875

    [46]

    Nose S 1991 Prog. Theor. Phys. Supp. 103 1

    [47]

    Liu Z F, Zhu H J, Chen H, Liu L R 2011 Acta Phys.-Chim. Sin. 27 2079

    [48]

    Ouyang M, Huang J L, Cheung C L, Lieber C M 2001 Science 292 702

    [49]

    Ding J W, Yan X H, Cao J X 2002 Phys. Rev. B 66 429

    [50]

    Liu X H, Zhu C C, Zeng F G, He Y N, Bao W X 2006 Acta Phys. Sin. 55 2830 (in Chinese) [刘兴辉, 朱长纯, 曾凡光, 贺永宁, 保文星 2006 物理学报 55 2830]

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Iijima S, Ichihashi T 1993 Nature 364 603

    [3]

    Peng L M, Zhang Z L, Xue Z Q, Wu Q D, Gu Z N, Pettifor D G 2000 Phys. Rev. Lett. 85 3249

    [4]

    Rao A M, Richter E, Bandow S, Chase B, Eklund P C, Williams K A, Fang S, Subbaswamy K R, Menon M, Thess A, Smalley R E, Dresselhaus G, Dresselhaus M S 1997 Science 275 187

    [5]

    Alvarez L, Righi A, Guillard T, Rolsa S, Anglareta E, Laplazea D, Sauvajolaet J L 2000 Chem. Phys. Lett. 316 186

    [6]

    Burda C, Chen X B, Narayanan R, El-Sayed M A 2005 Chem. Rev. 105 1025

    [7]

    Che J, Cagin T, Goddard W 2000 Nat. Nanotech. 11 2083

    [8]

    Gong X F, Wang Y, Ning X J 2008 Chin. Phys. Lett. 25 468

    [9]

    Wang X, Zheng F, Lu J, Bai J M, Wang Y, Wei F L 2011 Acta Phys. Sin. 60 017505 (in Chinese) [王璇, 郑富, 芦佳, 白建民, 王颖, 魏福林 2011 物理学报 60 017505]

    [10]

    Fan J, Wan M, Zhu D, Chang B, Pan Z, Xie S 1999 J. Appl. Polym. Sci. 74 2605

    [11]

    Kuzumaki T, Ujiie O, Ichinose H, Ito K 2000 Adv. Eng. Mater. 2 416

    [12]

    Service R F 1999 Science 285 682

    [13]

    Collins P G 1997 Science 278 100

    [14]

    Tans S J, Verschueren A R M, Dekker C 1998 Nature 393 49

    [15]

    Ma W, Liu L, Yang R, Zhang T, Zhang Z, Song L, Ren Y, Shen J, Niu Z, Zhou W, Xie S 2009 Adv. Mater. 21 603

    [16]

    Lin Y M, Appenzeller J, Chen Z, Chen Z G 2005 IEEE Electr. Dev. Lett. 26 823

    [17]

    Ding L, Tselev A, Wang J, Yuan D, Chu H, McNicholas T P, Li Y, Liu J 2009 Nano Lett. 9 800

    [18]

    de Volder M F, Tawfick S H, Baughman R H, Hart A J 2013 Science 339 535

    [19]

    Shulaker M M, Hills G, Patil N, Wei H, Chen H Y, Wong H S, Mitra S 2013 Nature 501 526

    [20]

    Hatta N, Murata K 1994 Chem. Phys. Lett. 217 393

    [21]

    Morales A M, Lieber C M 1998 Science 279 208

    [22]

    Ajayan P M 1999 Chem. Rev. 99 1787

    [23]

    Popov V N 2004 New J. Phys. 6 279

    [24]

    Odom T W, Huang J L, Kim P, Lieber C M 2000 J. Phys. Chem. B 104 2794

    [25]

    Zhao J, Park H, Han J, Lu J P 2004 J. Phys. Chem. B 108 4227

    [26]

    Ding J W, Yan X H, Cao J X, Yang B Q 2003 J. Phys.:-Condens. Matter 15 L439

    [27]

    Fischer J E, Johnson A T 1999 Curr. Opin. Solid St. M. 4 28

    [28]

    Luo J H, Zhang X B, Yu L, Cheng J P, Mi Y H, Liu F 2006 J. Mater. Sci.-Eng. 24 561 (in Chinese) [罗君航, 张孝彬, 李昱, 程继鹏,糜裕宏, 刘芙 2005 材料科学与工程学报 24 561]

    [29]

    Liu B C, Lyu S C, Jung S I, Kang H K, Yang C W, Park J W, Park C Y, Lee C J 2004 Chem. Phys. Lett. 383 104

    [30]

    Cheng H M, Li F, Su G, Pan H Y, He L L, Sun X, Dresselhaus M S 1998 Appl. Phys. Lett. 72 3282

    [31]

    Yao Y, Feng C, Zhang J, Yao Y G, Feng C Q, Zhang J, Liu Z F 2009 Nano Lett. 9 1673

    [32]

    Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang J Q, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y 2014 Nature 510 522

    [33]

    Yang F, Wang X, Zhang D, Qi K, Yang J, Xu Z, Li M, Zhao X, Bai X, Li Y 2015 J. Am. Chem. Soc. 137 8688

    [34]

    Yang F, Wang X, Li M, Liu X, Zhao X, Zhang D, Zhang Y, Yang J, Li Y 2016 Acc. Chem. Res. 49 606

    [35]

    Kiang C H 2000 J. Chem. Phys. 113 4763

    [36]

    Yu X, Zhang J, Choi W, Choi J Y, Kim J M, Gan L, Liu Z 2010 Nano Lett. 10 3343

    [37]

    Lu X X, Hu Z 2012 Compos. Part B: Eng. 43 1902

    [38]

    An W, Shao N, Bulusu S, Zeng X C 2008 J. Chem. Phys. 128 084301

    [39]

    Jensen F, Toftlund H 1993 Chem. Phys. Lett. 201 89

    [40]

    Jensen F, Koch H 1998 J. Chem. Phys. 108 3213

    [41]

    Wu H S, Jia J F, Xu X H 2004 Acta Chim. Sin. 62 105

    [42]

    Galli G, Gygi F, Golaz J C 1998 Phys. Rev. B 57 1860

    [43]

    Chen Z, Heine T, Jiao H, Hirsch A, Thiel W, Schleyer P 2004 Chem.-Eur. J. 10 963

    [44]

    Lu X, Chen Z 2006 Chem. Rev. 105 3643

    [45]

    Jin Y F, Hao C 2005 J. Phys. Chem. A 109 2875

    [46]

    Nose S 1991 Prog. Theor. Phys. Supp. 103 1

    [47]

    Liu Z F, Zhu H J, Chen H, Liu L R 2011 Acta Phys.-Chim. Sin. 27 2079

    [48]

    Ouyang M, Huang J L, Cheung C L, Lieber C M 2001 Science 292 702

    [49]

    Ding J W, Yan X H, Cao J X 2002 Phys. Rev. B 66 429

    [50]

    Liu X H, Zhu C C, Zeng F G, He Y N, Bao W X 2006 Acta Phys. Sin. 55 2830 (in Chinese) [刘兴辉, 朱长纯, 曾凡光, 贺永宁, 保文星 2006 物理学报 55 2830]

  • [1] 李景辉, 曹胜果, 韩佳凝, 李占海, 张振华. 边修饰GeS2纳米带的电子特性及调控效应. 物理学报, 2024, 73(5): 056102. doi: 10.7498/aps.73.20231670
    [2] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, 2022, 71(4): 046102. doi: 10.7498/aps.71.20211748
    [3] 张华林, 何鑫, 张振华. 过渡金属原子掺杂的锯齿型磷烯纳米带的磁电子学特性. 物理学报, 2021, 70(5): 056101. doi: 10.7498/aps.70.20201408
    [4] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211748
    [5] 王丹, 邹娟, 唐黎明. 氢化二维过渡金属硫化物的稳定性和电子特性: 第一性原理研究. 物理学报, 2019, 68(3): 037102. doi: 10.7498/aps.68.20181597
    [6] 刘慧英, 张秀钦, 方艺梅, 朱梓忠. T型石墨烯及其衍生物的结构与电子特性. 物理学报, 2017, 66(16): 166101. doi: 10.7498/aps.66.166101
    [7] 邓发明. 强激光照射对6H-SiC晶体电子特性的影响. 物理学报, 2016, 65(10): 107101. doi: 10.7498/aps.65.107101
    [8] 邓发明. 强激光照射对2H-SiC晶体电子特性的影响. 物理学报, 2015, 64(22): 227101. doi: 10.7498/aps.64.227101
    [9] 李骏, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带卷曲效应对其电子特性的影响. 物理学报, 2013, 62(5): 056103. doi: 10.7498/aps.62.056103
    [10] 曾永昌, 田文, 张振华. 周期性纳米洞内边缘氧饱和石墨烯纳米带的电子特性. 物理学报, 2013, 62(23): 236102. doi: 10.7498/aps.62.236102
    [11] 王玥, 贺训军, 吴昱明, 吴群, 梅金硕, 李龙威, 杨福杏, 赵拓, 李乐伟. 碳纳米管薄膜周期结构的太赫兹表面等离子波特性研究. 物理学报, 2011, 60(10): 107301. doi: 10.7498/aps.60.107301
    [12] 杨杰, 董全力, 江兆潭, 张杰. 自旋轨道耦合作用对碳纳米管电子能带结构的影响. 物理学报, 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [13] 秦威, 张振华, 刘新海. 卷曲效应对单壁碳纳米管电子结构的影响. 物理学报, 2011, 60(12): 127303. doi: 10.7498/aps.60.127303
    [14] 魏燕, 胡慧芳, 王志勇, 程彩萍, 陈南庭, 谢能. 氮掺杂手性碳纳米管的电子结构和输运特性的理论研究. 物理学报, 2011, 60(2): 027307. doi: 10.7498/aps.60.027307
    [15] 张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤. 硼掺杂单壁碳纳米管吸附甲醛的电子结构和光学性能研究. 物理学报, 2010, 59(1): 527-531. doi: 10.7498/aps.59.527
    [16] 王利光, 张鸿宇, 王畅, Terence K. S. W.. 嵌入锂原子的zigzag型单壁碳纳米管的电子传导特性. 物理学报, 2010, 59(1): 536-540. doi: 10.7498/aps.59.536
    [17] 解 研, 罗 莹, 刘绍军. 单向压力对碳纳米管(6, 6)晶体电子结构的影响. 物理学报, 2008, 57(7): 4364-4370. doi: 10.7498/aps.57.4364
    [18] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [19] 梁君武, 胡慧芳, 韦建卫, 彭 平. 氧吸附对单壁碳纳米管的电子结构和光学性能的影响. 物理学报, 2005, 54(6): 2877-2882. doi: 10.7498/aps.54.2877
    [20] 张振华, 彭景翠, 陈小华, 张华. 手性环状碳纳米管的电子结构及磁化特性. 物理学报, 2001, 50(6): 1150-1156. doi: 10.7498/aps.50.1150
计量
  • 文章访问数:  5372
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-13
  • 修回日期:  2017-02-18
  • 刊出日期:  2017-05-05

/

返回文章
返回