搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器

王小发 张俊红 高子叶 夏光琼 吴正茂

基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器

王小发, 张俊红, 高子叶, 夏光琼, 吴正茂
PDF
导出引用
  • 报道了一种基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器.该激光器采用环形腔结构,利用自制的三层石墨烯薄膜作为可饱和吸收体实现锁模.同时在腔内插入一个窄带光纤光栅,约束腔内起振的纵模数,适当调节抽运功率和偏振控制器的角度,得到了重复频率为3.8 MHz、脉宽在3.8-94.3 ns之间灵活可调的2 μm纳秒锁模脉冲输出,整个脉宽调节范围超过90 ns.此外,由于获得的兆赫兹纳秒锁模脉冲时间带宽积在49-1119范围内,即存在强烈的啁啾,因而可作为2 μm波段啁啾脉冲放大系统中的种子源使用.
      通信作者: 吴正茂, zmwu@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11304409,61475127,61575163)、重庆市自然科学基金(批准号:CSTC2013jcyjA4004)、重庆市教委科学技术研究项目(批准号:KJ1500422)和液晶面板产业共性技术创新专题项目(批准号:CSTC2015zdcy-ztzx40003)资助的课题.
    [1]

    Wang Q, Geng J, Luo T, Jiang S 2009 Opt. Lett. 34 3616

    [2]

    Liu J, Xu J, Liu K, Tan F, Wang P 2013 Opt. Lett. 38 4150

    [3]

    Yang N, Tang Y, Xu J 2015 Laser Phys. Lett. 12 085102

    [4]

    Kieu K, Wise F 2009 Lasers and Electro-Optics Baltimore, Maryland USA, June 2-4 2009 pCML7

    [5]

    Wang Y, Alam S, Obraztsova E, Pozharov A, Set S, Yamashita S 2016 Opt. Lett. 41 3864

    [6]

    Yan Z Y, Li X H, Tang Y L, Shum P, Zhang Y, Wang Q J 2015 Opt. Express 23 4369

    [7]

    Wang Q Q, Chen T, Chen K 2010 Lasers and Electro-Optics San Jose, California, USA, May 16-21, 2010 pCFK7

    [8]

    Rudy C, Urbanek K, Digonnet M, Byer R 2013 J. Lightwave Technol. 31 1809

    [9]

    Jin X X, Wang X, Wang X, Zhou P 2015 Appl. Opt. 54 8260

    [10]

    Huang S S, Wang Y G, Yan P G, Zhang G L, Li H Q, Lin R Y 2014 Laser Phys. 24 015001

    [11]

    Huang S S, Wang Y G, Yan P G, Zhao J Q, Li H Q, Lin R Y 2014 Opt. Express 22 11417

    [12]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photon. 4 611

    [13]

    Bao Q, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang Y T 2009 Adv. Funct. Mater. 19 3077

    [14]

    Zhang M, Kelleher E, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari A, Popov S, Taylor J 2012 Opt. Express 20 25077

    [15]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K 2013 Opt. Express 21 12797

    [16]

    Wang Q Q, Chen T, Zhang B, Li M S, Lu Y F, Chen K 2013 Appl. Phys. Lett. 102 131117

    [17]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K 2015 Opt. Express 23 9339

    [18]

    Boguslawski J, Sotor J, Sobon G, Kozinski R, Librant K, Aksienionek M, Lipinska L, Abramski K 2015 Photon. Res. 3 119

    [19]

    Ismail M A, Harun S W, Zulkepely N R, Nor R M, Ahmad F, Ahmad H 2012 Appl. Opt. 51 8621

    [20]

    Kelleher E, Travers J, Sun Z, Rozhin A, Ferrari A 2009 Appl. Phys. Lett. 95 111108

    [21]

    Zhang X M, Gu C, Chen G L, Sun B, Xu L X, Wang A T, Ming H 2012 Opt. Lett. 37 1334

    [22]

    Xu J, Wu S D, Liu J, Wang Q, Yang Q H, Wang P 2012 Opt. Commun. 285 4466

    [23]

    Kobtsev S, Kukarin S, Fedotov Y 2008 Opt. Express 16 21936

    [24]

    Liu Z B, He X Y, Wang D N 2011 Opt. Lett. 36 3024

    [25]

    Azooz S, Harun S, Ahmad H, Halder A, Paul M, Pal M, Bhadra S 2015 Chin. Phys. Lett. 32 014204

    [26]

    Wang X, Zhou P, Wang X L, Xiao H, Liu Z J 2014 Opt. Express 22 6147

    [27]

    Fu B, Gui L, Li X, Xiao X S, Zhu H W, Yang C X 2013 IEEE Photon. Tech. L. 25 1447

    [28]

    Wang W R, Zhou Y X, Li T, Wang Y L, Xie X M 2012 Acta Phys. Sin. 61 038702 (in Chinese) [王文荣, 周玉修, 李铁, 王跃林, 谢晓明 2012 物理学报 61 038702]

    [29]

    Ferrari A, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S, Geim A 2006 Phys. Rev. Lett. 97 187401

    [30]

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C 2007 Nano Lett. 7 238

    [31]

    Liu J, Xu J, Wang P 2012 IEEE Photon. Tech. Lett. 24 539

    [32]

    Zhao J Q, Wang Y G, Yan P G, Ruan S C, Zhang G L, Li H Q, Tsang Y H 2013 Laser Phys. 23 075105

    [33]

    Jin C, Yang S G, Wang X J, Chen H W, Chen M H, Xie S Z 2016 IEEE Photon. Tech. Lett. 28 1352

    [34]

    Kelleher E, Travers J, Ippen E, Sun Z, Ferrari A, Popov S, Taylor J 2009 Opt. Lett. 34 3526

  • [1]

    Wang Q, Geng J, Luo T, Jiang S 2009 Opt. Lett. 34 3616

    [2]

    Liu J, Xu J, Liu K, Tan F, Wang P 2013 Opt. Lett. 38 4150

    [3]

    Yang N, Tang Y, Xu J 2015 Laser Phys. Lett. 12 085102

    [4]

    Kieu K, Wise F 2009 Lasers and Electro-Optics Baltimore, Maryland USA, June 2-4 2009 pCML7

    [5]

    Wang Y, Alam S, Obraztsova E, Pozharov A, Set S, Yamashita S 2016 Opt. Lett. 41 3864

    [6]

    Yan Z Y, Li X H, Tang Y L, Shum P, Zhang Y, Wang Q J 2015 Opt. Express 23 4369

    [7]

    Wang Q Q, Chen T, Chen K 2010 Lasers and Electro-Optics San Jose, California, USA, May 16-21, 2010 pCFK7

    [8]

    Rudy C, Urbanek K, Digonnet M, Byer R 2013 J. Lightwave Technol. 31 1809

    [9]

    Jin X X, Wang X, Wang X, Zhou P 2015 Appl. Opt. 54 8260

    [10]

    Huang S S, Wang Y G, Yan P G, Zhang G L, Li H Q, Lin R Y 2014 Laser Phys. 24 015001

    [11]

    Huang S S, Wang Y G, Yan P G, Zhao J Q, Li H Q, Lin R Y 2014 Opt. Express 22 11417

    [12]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photon. 4 611

    [13]

    Bao Q, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang Y T 2009 Adv. Funct. Mater. 19 3077

    [14]

    Zhang M, Kelleher E, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari A, Popov S, Taylor J 2012 Opt. Express 20 25077

    [15]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K 2013 Opt. Express 21 12797

    [16]

    Wang Q Q, Chen T, Zhang B, Li M S, Lu Y F, Chen K 2013 Appl. Phys. Lett. 102 131117

    [17]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K 2015 Opt. Express 23 9339

    [18]

    Boguslawski J, Sotor J, Sobon G, Kozinski R, Librant K, Aksienionek M, Lipinska L, Abramski K 2015 Photon. Res. 3 119

    [19]

    Ismail M A, Harun S W, Zulkepely N R, Nor R M, Ahmad F, Ahmad H 2012 Appl. Opt. 51 8621

    [20]

    Kelleher E, Travers J, Sun Z, Rozhin A, Ferrari A 2009 Appl. Phys. Lett. 95 111108

    [21]

    Zhang X M, Gu C, Chen G L, Sun B, Xu L X, Wang A T, Ming H 2012 Opt. Lett. 37 1334

    [22]

    Xu J, Wu S D, Liu J, Wang Q, Yang Q H, Wang P 2012 Opt. Commun. 285 4466

    [23]

    Kobtsev S, Kukarin S, Fedotov Y 2008 Opt. Express 16 21936

    [24]

    Liu Z B, He X Y, Wang D N 2011 Opt. Lett. 36 3024

    [25]

    Azooz S, Harun S, Ahmad H, Halder A, Paul M, Pal M, Bhadra S 2015 Chin. Phys. Lett. 32 014204

    [26]

    Wang X, Zhou P, Wang X L, Xiao H, Liu Z J 2014 Opt. Express 22 6147

    [27]

    Fu B, Gui L, Li X, Xiao X S, Zhu H W, Yang C X 2013 IEEE Photon. Tech. L. 25 1447

    [28]

    Wang W R, Zhou Y X, Li T, Wang Y L, Xie X M 2012 Acta Phys. Sin. 61 038702 (in Chinese) [王文荣, 周玉修, 李铁, 王跃林, 谢晓明 2012 物理学报 61 038702]

    [29]

    Ferrari A, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S, Geim A 2006 Phys. Rev. Lett. 97 187401

    [30]

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C 2007 Nano Lett. 7 238

    [31]

    Liu J, Xu J, Wang P 2012 IEEE Photon. Tech. Lett. 24 539

    [32]

    Zhao J Q, Wang Y G, Yan P G, Ruan S C, Zhang G L, Li H Q, Tsang Y H 2013 Laser Phys. 23 075105

    [33]

    Jin C, Yang S G, Wang X J, Chen H W, Chen M H, Xie S Z 2016 IEEE Photon. Tech. Lett. 28 1352

    [34]

    Kelleher E, Travers J, Ippen E, Sun Z, Ferrari A, Popov S, Taylor J 2009 Opt. Lett. 34 3526

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2071
  • PDF下载量:  318
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-14
  • 修回日期:  2017-04-06
  • 刊出日期:  2017-06-05

基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器

  • 1. 西南大学物理科学与技术学院, 重庆 400715;
  • 2. 重庆邮电大学光电工程学院, 重庆高校光通信技术重点实验室, 重庆 400065;
  • 3. 西南大学数学与统计学院, 重庆 400715
  • 通信作者: 吴正茂, zmwu@swu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:11304409,61475127,61575163)、重庆市自然科学基金(批准号:CSTC2013jcyjA4004)、重庆市教委科学技术研究项目(批准号:KJ1500422)和液晶面板产业共性技术创新专题项目(批准号:CSTC2015zdcy-ztzx40003)资助的课题.

摘要: 报道了一种基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器.该激光器采用环形腔结构,利用自制的三层石墨烯薄膜作为可饱和吸收体实现锁模.同时在腔内插入一个窄带光纤光栅,约束腔内起振的纵模数,适当调节抽运功率和偏振控制器的角度,得到了重复频率为3.8 MHz、脉宽在3.8-94.3 ns之间灵活可调的2 μm纳秒锁模脉冲输出,整个脉宽调节范围超过90 ns.此外,由于获得的兆赫兹纳秒锁模脉冲时间带宽积在49-1119范围内,即存在强烈的啁啾,因而可作为2 μm波段啁啾脉冲放大系统中的种子源使用.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回