搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三角形石墨烯量子点阵列的磁电子学特性和磁输运性质

胡锐 范志强 张振华

三角形石墨烯量子点阵列的磁电子学特性和磁输运性质

胡锐, 范志强, 张振华
PDF
导出引用
  • 基于密度泛函理论的第一性原理计算方法,研究了三角形石墨烯纳米片用不同连接方式拼接而成的四种一维量子点阵列(1D QDAs)的磁电子学性质和磁输运性质.结合能计算表明所有1D QDAs是非常稳定的.特别是研究发现1D QDAs的电子和磁性质不仅依赖于磁性态,也明显依赖于连接方式,如在无磁态时,不同量子点阵列(QDAs)可为金属或窄带隙半导体.在铁磁态时,不同QDAs能为半金属(half-metal)或带隙不同的双极化磁性半导体.而在反铁磁态时,不同QDAs为带隙不等的半导体.这些结果意味着连接方式对有效调控纳米结构电子和磁性质扮演重要的角色.1D QDAs呈现的半金属或双极化磁性半导体性质对于发展磁器件是非常重要的,而这些性质未曾在本征石墨烯纳米带中出现.同时,我们也研究了一种阵列的磁器件特性,发现其拥有完美的(100%)单或双自旋过滤效应,尤其是呈现超过109%的巨磁阻效应.
      通信作者: 张振华, lgzzhang@sohu.com
    • 基金项目: 国家自然科学基金(批准号:61371065,11674039)和湖南省自然科学基金(批准号:14JJ2076,2015JJ3002,2015JJ2009,2015JJ2013)资助的课题.
    [1]

    Noveselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonosn S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Weiss N O, Zhou H L, Liao L, Liu Y, Jiang S, Huang Y, Duan X F 2012 Adv. Mater. 24 5782

    [3]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [4]

    Katsnelson M I, Novoselov K S 2007 Solid State Commun. 14 3

    [5]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [6]

    Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K 2008 Phys. Rev. Lett. 100 016602

    [7]

    Lee C, Wei X D, Kysar J W, Hone J 2008 Science 321 385

    [8]

    Hu J N, Ruan X L, Chen Y P 2009 Nano Lett. 9 2730

    [9]

    Evans W J, Hu L, Keblinski P 2010 Appl. Phys. Lett. 96 203112

    [10]

    Kusakabe K, Maruyama M 2003 Phys. Rev. B 67 092406

    [11]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [12]

    Pisani L, Chan J A, Montanari B, Harrison N M 2007 Phys. Rev. B 75 064418

    [13]

    Huang B, Liu F, Wu J, Gu B L, Duan W H 2008 Phys. Rev. B 77 153411

    [14]

    Chen Y, Hu H F, Wang X W, Zhang Z J, Cheng C P 2015 Acta Phys. Sin. 64 196101 (in Chinese)[陈鹰, 胡慧芳, 王晓伟, 张照锦, 程彩萍 2015 物理学报 64 196101]

    [15]

    Fernandez-Rossier J, Palacios J J 2007 Phys. Rev. Lett. 99 177204

    [16]

    Wang W L, Meng S, Kairas E 2007 Nano Lett. 8 241

    [17]

    Ezawa M 2007 Phys. Rev. B 76 245415

    [18]

    Hod O, Barone V, Scuseria G E 2008 Phys. Rev. B 77 035411

    [19]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [20]

    Hod O, Barone V, Scuseria G E 2008 Phys. Rev. B 77 035411

    [21]

    Wang W L, Yazyev O V, Meng S, Kaxiras E 2009 Phys. Rev. Lett. 102 157201

    [22]

    Ezawa M 2010 Physica E 42 703

    [23]

    Li J, Zhang Z H, Zhang J J, Deng X Q 2012 Org. Electron. 13 2257

    [24]

    Zhang J J, Zhang Z H, Guo C, Li J, Deng X Q 2012 Acta Phys. -Chim. Sin. 28 1701 (in Chinese)[张俊俊, 张振华, 郭超, 李杰, 邓小清 2012 物理化学学报 28 1701]

    [25]

    Lee G, Cho K 2009 Phys. Rev. B 79 165440

    [26]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 207101 (in Chinese)[王鼎, 张振华, 邓小清, 范志强 2013 物理学报 62 207101]

    [27]

    Yuan P F, Tian W, Zeng Y C, Zhang Z H, Zhang J J 2014 Org. Electron. 15 3577

    [28]

    Wang D, Zhang Z, Zhu Z, Liang B 2014 Sci. Rep. 4 7587

    [29]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [30]

    Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [31]

    Zeng J, Chen K Q, He J, Zhang X J, Sun C Q 2011 J. Phys. Chem. C 115 25072

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [33]

    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. Rev. B 54 17954

    [34]

    Fujita M, Wakabayashi K, Nakada K, Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920

    [35]

    Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469

    [36]

    Yu D, Lupton E M, Gao H J, Zhang C, Liu F 2008 Nano Res. 1 497

    [37]

    de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1983 Phys. Rev. Lett. 50 2024

    [38]

    Prinz G A 1998 Science 282 1660

    [39]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [40]

    Munoz-Rojas F, Fernandez-Rossier J, Palacios J J 2009 Phys. Rev. Lett. 102 136810

    [41]

    Landauer R 1970 Philos. Mag. 21 863

    [42]

    Parkin S S, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862

  • [1]

    Noveselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonosn S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Weiss N O, Zhou H L, Liao L, Liu Y, Jiang S, Huang Y, Duan X F 2012 Adv. Mater. 24 5782

    [3]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [4]

    Katsnelson M I, Novoselov K S 2007 Solid State Commun. 14 3

    [5]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [6]

    Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K 2008 Phys. Rev. Lett. 100 016602

    [7]

    Lee C, Wei X D, Kysar J W, Hone J 2008 Science 321 385

    [8]

    Hu J N, Ruan X L, Chen Y P 2009 Nano Lett. 9 2730

    [9]

    Evans W J, Hu L, Keblinski P 2010 Appl. Phys. Lett. 96 203112

    [10]

    Kusakabe K, Maruyama M 2003 Phys. Rev. B 67 092406

    [11]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [12]

    Pisani L, Chan J A, Montanari B, Harrison N M 2007 Phys. Rev. B 75 064418

    [13]

    Huang B, Liu F, Wu J, Gu B L, Duan W H 2008 Phys. Rev. B 77 153411

    [14]

    Chen Y, Hu H F, Wang X W, Zhang Z J, Cheng C P 2015 Acta Phys. Sin. 64 196101 (in Chinese)[陈鹰, 胡慧芳, 王晓伟, 张照锦, 程彩萍 2015 物理学报 64 196101]

    [15]

    Fernandez-Rossier J, Palacios J J 2007 Phys. Rev. Lett. 99 177204

    [16]

    Wang W L, Meng S, Kairas E 2007 Nano Lett. 8 241

    [17]

    Ezawa M 2007 Phys. Rev. B 76 245415

    [18]

    Hod O, Barone V, Scuseria G E 2008 Phys. Rev. B 77 035411

    [19]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [20]

    Hod O, Barone V, Scuseria G E 2008 Phys. Rev. B 77 035411

    [21]

    Wang W L, Yazyev O V, Meng S, Kaxiras E 2009 Phys. Rev. Lett. 102 157201

    [22]

    Ezawa M 2010 Physica E 42 703

    [23]

    Li J, Zhang Z H, Zhang J J, Deng X Q 2012 Org. Electron. 13 2257

    [24]

    Zhang J J, Zhang Z H, Guo C, Li J, Deng X Q 2012 Acta Phys. -Chim. Sin. 28 1701 (in Chinese)[张俊俊, 张振华, 郭超, 李杰, 邓小清 2012 物理化学学报 28 1701]

    [25]

    Lee G, Cho K 2009 Phys. Rev. B 79 165440

    [26]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 207101 (in Chinese)[王鼎, 张振华, 邓小清, 范志强 2013 物理学报 62 207101]

    [27]

    Yuan P F, Tian W, Zeng Y C, Zhang Z H, Zhang J J 2014 Org. Electron. 15 3577

    [28]

    Wang D, Zhang Z, Zhu Z, Liang B 2014 Sci. Rep. 4 7587

    [29]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [30]

    Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [31]

    Zeng J, Chen K Q, He J, Zhang X J, Sun C Q 2011 J. Phys. Chem. C 115 25072

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [33]

    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. Rev. B 54 17954

    [34]

    Fujita M, Wakabayashi K, Nakada K, Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920

    [35]

    Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469

    [36]

    Yu D, Lupton E M, Gao H J, Zhang C, Liu F 2008 Nano Res. 1 497

    [37]

    de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1983 Phys. Rev. Lett. 50 2024

    [38]

    Prinz G A 1998 Science 282 1660

    [39]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [40]

    Munoz-Rojas F, Fernandez-Rossier J, Palacios J J 2009 Phys. Rev. Lett. 102 136810

    [41]

    Landauer R 1970 Philos. Mag. 21 863

    [42]

    Parkin S S, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862

  • [1] 邹承役, 吴绍全, 赵国平. 串型耦合双量子点处于自旋阻塞区时磁输运性质的研究. 物理学报, 2013, 62(1): 017201. doi: 10.7498/aps.62.017201
    [2] 王先杰, 隋 郁, 千正男, 刘志国, 苗继鹏, 黄喜强, 吕 喆, 朱瑞滨, 程金光, 苏文辉. Fe位Al掺杂对Sr2FeMoO6磁结构和磁输运性质的影响. 物理学报, 2006, 55(2): 849-853. doi: 10.7498/aps.55.849
    [3] 张华林, 孙琳, 韩佳凝. 掺杂三角形硼氮片的锯齿型石墨烯纳米带的磁电子学性质. 物理学报, 2017, 66(24): 246101. doi: 10.7498/aps.66.246101
    [4] 林峰, 李缵轶, 王山鹰. TiO2纳米管的力学和电子学性质. 物理学报, 2009, 58(12): 8544-8548. doi: 10.7498/aps.58.8544
    [5] 刘娟, 胡锐, 范志强, 张振华. 过渡金属掺杂的扶手椅型氮化硼纳米带的磁电子学特性及力-磁耦合效应. 物理学报, 2017, 66(23): 238501. doi: 10.7498/aps.66.238501
    [6] 田文, 袁鹏飞, 禹卓良, 陶斌凯, 侯森耀, 叶聪, 张振华. 掺杂六角形石墨烯电子输运特性的研究. 物理学报, 2015, 64(4): 046102. doi: 10.7498/aps.64.046102
    [7] 刘祥龙, 朱满座, 路璐. 等腰直角三角形的二维量子谱和经典轨道 . 物理学报, 2012, 61(22): 220301. doi: 10.7498/aps.61.220301
    [8] 董国丹, 张焕好, 林震亚, 秦建华, 陈志华, 郭则庆, 沙莎. 磁控条件下激波冲击三角形气柱过程的数值研究. 物理学报, 2018, 67(20): 204701. doi: 10.7498/aps.67.20181127
    [9] 田子建, 李玮祥, 樊京. 基于双三角形金属条的二维可衍生超材料性能分析. 物理学报, 2015, 64(3): 034102. doi: 10.7498/aps.64.034102
    [10] 刘志刚, 刘伟龙, 赵海军. 量子计算正三角形腔内的氢负离子光剥离截面. 物理学报, 2015, 64(16): 163202. doi: 10.7498/aps.64.163202
    [11] 张华林, 何鑫, 张振华. 过渡金属原子掺杂的锯齿型磷烯纳米带的磁电子学特性. 物理学报, 2021, (): . doi: 10.7498/aps.70.20201408
    [12] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [13] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质. 物理学报, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [14] 李野华, 范志强, 张振华. 非金属原子边缘修饰InSe纳米带的磁电子学特性及应变调控. 物理学报, 2019, 68(19): 198503. doi: 10.7498/aps.68.20190547
    [15] 吴绍全, 方栋开, 赵国平. 电子关联效应对平行双量子点系统磁输运性质的影响. 物理学报, 2015, 64(10): 107201. doi: 10.7498/aps.64.107201
    [16] 张志东, 高思敏, 王辉, 王红艳. 三角缺口正三角形纳米结构的共振模式. 物理学报, 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [17] 欧阳方平, 徐 慧, 魏 辰. Zigzag型石墨纳米带电子结构和输运性质的第一性原理研究. 物理学报, 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
    [18] 高矿红, 魏来明, 俞国林, 杨睿, 林铁, 魏彦锋, 杨建荣, 孙雷, 戴宁, 褚君浩. HgCdTe反型层的磁输运性质. 物理学报, 2012, 61(2): 027301. doi: 10.7498/aps.61.027301
    [19] 左敏, 廖文虎, 吴丹, 林丽娥. 石墨烯纳米带电极同分异构喹啉分子结电子输运性质. 物理学报, 2019, 68(23): 237302. doi: 10.7498/aps.68.20191154
    [20] 安兴涛, 刁淑萌. 门电压控制的硅烯量子线中电子输运性质. 物理学报, 2014, 63(18): 187304. doi: 10.7498/aps.63.187304
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1051
  • PDF下载量:  227
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-01
  • 修回日期:  2017-04-21
  • 刊出日期:  2017-07-05

三角形石墨烯量子点阵列的磁电子学特性和磁输运性质

  • 1. 长沙理工大学物理与电子科学学院, 长沙 410114
  • 通信作者: 张振华, lgzzhang@sohu.com
    基金项目: 

    国家自然科学基金(批准号:61371065,11674039)和湖南省自然科学基金(批准号:14JJ2076,2015JJ3002,2015JJ2009,2015JJ2013)资助的课题.

摘要: 基于密度泛函理论的第一性原理计算方法,研究了三角形石墨烯纳米片用不同连接方式拼接而成的四种一维量子点阵列(1D QDAs)的磁电子学性质和磁输运性质.结合能计算表明所有1D QDAs是非常稳定的.特别是研究发现1D QDAs的电子和磁性质不仅依赖于磁性态,也明显依赖于连接方式,如在无磁态时,不同量子点阵列(QDAs)可为金属或窄带隙半导体.在铁磁态时,不同QDAs能为半金属(half-metal)或带隙不同的双极化磁性半导体.而在反铁磁态时,不同QDAs为带隙不等的半导体.这些结果意味着连接方式对有效调控纳米结构电子和磁性质扮演重要的角色.1D QDAs呈现的半金属或双极化磁性半导体性质对于发展磁器件是非常重要的,而这些性质未曾在本征石墨烯纳米带中出现.同时,我们也研究了一种阵列的磁器件特性,发现其拥有完美的(100%)单或双自旋过滤效应,尤其是呈现超过109%的巨磁阻效应.

English Abstract

参考文献 (42)

目录

    /

    返回文章
    返回