搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种具有隐藏吸引子的分数阶混沌系统的动力学分析及有限时间同步

郑广超 刘崇新 王琰

一种具有隐藏吸引子的分数阶混沌系统的动力学分析及有限时间同步

郑广超, 刘崇新, 王琰
PDF
导出引用
导出核心图
  • 对于具有隐藏吸引子的混沌系统,既有文献大多只针对整数阶系统进行分析与控制研究.基于Sprott E系统,构建了仅有一个稳定平衡点的分数阶混沌系统,通过相位图、Poincare映射和功率谱等,分析了该系统的基本动力学特征.结果显示,该系统展现出了丰富而复杂的动力学特性,且通过随阶次变化的分岔图可知,系统在不同阶次下呈现出周期运动、倍周期运动和混沌运动等状态,这些动力学特征对于保密通信等实际工程领域有重要的研究价值.针对该具有隐藏吸引子的分数阶系统,应用分数阶系统有限时间稳定性理论设计控制器,对系统进行有限时间同步控制,并通过数值仿真验证了其有效性.
      通信作者: 郑广超, 342267105@qq.com
    • 基金项目: 国家自然科学基金创新研究群体科学基金(批准号:51521065)资助的课题.
    [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Rössler O E 1976 Phys. Lett. A 57 397

    [3]

    Chen G R, Ueta T 1999 Int. J. Bifurcation Chaos 9 1465

    [4]

    Liu C X, Liu T, Liu L, Liu K 2004 Chaos Solitions Fractals 22 1031

    [5]

    L J H, Chen G R 2002 Int. J. Bifurcation Chaos 12 659

    [6]

    Liu W B, Chen G R 2003 Int. J. Bifurcation Chaos 13 261

    [7]

    Qi G Y, Chen G R, Du S Z, Chen Z Q, Yuan Z Z 2005 Physica A 352 295

    [8]

    Bao B C, Liu Z, Xu J P 2009 J. Sys. Eng. Electron. 20 1179

    [9]

    Shilnikov L P 1965 Sov. Math. Dokl. 6 163

    [10]

    Leonov G A, Kuznetsov N V, Vagaitsev V I 2011 Phys. Lett. A 375 2230

    [11]

    Molaie M, Jafari S, Sprott J C, Golpayegani S M R H 2013 Int. J. Bifurcation Chaos 23 1350188

    [12]

    Wang X, Chen G R 2012 Commu. Nonlinear Sci. Numer. Simul. 17 1264

    [13]

    Jafari S, Sprott J C, Golpayegani S M R H 2013 Phys. Lett. A 377 699

    [14]

    Wei Z 2011 Phys. Lett. A 376 102

    [15]

    Jafari S, Sprott J C 2013 Chaos Solitions Fractals 57 79

    [16]

    Li Q D, Zeng H Z, Yang X S 2014 Nonlinear Dyn. 77 255

    [17]

    Leonov G A, Kuznetsov N V, Mokaev T N 2015 Commu. Nonlinear Sci. Numer. Simul. 28 166

    [18]

    Zhang Y A, Yu M Z, Wu H L 2016 Acta Electron. Sin. 44 607 (in Chinese) [张友安, 余名哲, 吴华丽 2016 电子学报 44 607]

    [19]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [20]

    Li C G, Liao X F, Yu J B 2003 Phys. Rev. E 68 067203

    [21]

    Jia H Y, Chen Z Q, Yuan Z Z 2010 Chin. Phys. B 19 020507

    [22]

    Zhang L, Yan Y 2014 Nonlinear Dyn. 76 1761

    [23]

    Wang D F, Zhang J Y, Wang X Y 2013 Chin. Phys. B 22 100504

    [24]

    Zhao L D, Hu J B, Bao Z H, Zhang G A, Xu C, Zhang S B 2011 Acta Phys. Sin. 60 100507 (in Chinese) [赵灵冬, 胡建兵, 包志华, 章国安, 徐晨, 张士兵 2011 物理学报 60 100507]

    [25]

    Podlubny I 1999 Fractional Differential Equations (San Diego: Academic Press) p18

    [26]

    Sprott J C 1994 Phys. Rev. E 50 647

  • [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Rössler O E 1976 Phys. Lett. A 57 397

    [3]

    Chen G R, Ueta T 1999 Int. J. Bifurcation Chaos 9 1465

    [4]

    Liu C X, Liu T, Liu L, Liu K 2004 Chaos Solitions Fractals 22 1031

    [5]

    L J H, Chen G R 2002 Int. J. Bifurcation Chaos 12 659

    [6]

    Liu W B, Chen G R 2003 Int. J. Bifurcation Chaos 13 261

    [7]

    Qi G Y, Chen G R, Du S Z, Chen Z Q, Yuan Z Z 2005 Physica A 352 295

    [8]

    Bao B C, Liu Z, Xu J P 2009 J. Sys. Eng. Electron. 20 1179

    [9]

    Shilnikov L P 1965 Sov. Math. Dokl. 6 163

    [10]

    Leonov G A, Kuznetsov N V, Vagaitsev V I 2011 Phys. Lett. A 375 2230

    [11]

    Molaie M, Jafari S, Sprott J C, Golpayegani S M R H 2013 Int. J. Bifurcation Chaos 23 1350188

    [12]

    Wang X, Chen G R 2012 Commu. Nonlinear Sci. Numer. Simul. 17 1264

    [13]

    Jafari S, Sprott J C, Golpayegani S M R H 2013 Phys. Lett. A 377 699

    [14]

    Wei Z 2011 Phys. Lett. A 376 102

    [15]

    Jafari S, Sprott J C 2013 Chaos Solitions Fractals 57 79

    [16]

    Li Q D, Zeng H Z, Yang X S 2014 Nonlinear Dyn. 77 255

    [17]

    Leonov G A, Kuznetsov N V, Mokaev T N 2015 Commu. Nonlinear Sci. Numer. Simul. 28 166

    [18]

    Zhang Y A, Yu M Z, Wu H L 2016 Acta Electron. Sin. 44 607 (in Chinese) [张友安, 余名哲, 吴华丽 2016 电子学报 44 607]

    [19]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [20]

    Li C G, Liao X F, Yu J B 2003 Phys. Rev. E 68 067203

    [21]

    Jia H Y, Chen Z Q, Yuan Z Z 2010 Chin. Phys. B 19 020507

    [22]

    Zhang L, Yan Y 2014 Nonlinear Dyn. 76 1761

    [23]

    Wang D F, Zhang J Y, Wang X Y 2013 Chin. Phys. B 22 100504

    [24]

    Zhao L D, Hu J B, Bao Z H, Zhang G A, Xu C, Zhang S B 2011 Acta Phys. Sin. 60 100507 (in Chinese) [赵灵冬, 胡建兵, 包志华, 章国安, 徐晨, 张士兵 2011 物理学报 60 100507]

    [25]

    Podlubny I 1999 Fractional Differential Equations (San Diego: Academic Press) p18

    [26]

    Sprott J C 1994 Phys. Rev. E 50 647

  • [1] 庄志本, 李军, 刘静漪, 陈世强. 基于新的五维多环多翼超混沌系统的图像加密算法. 物理学报, 2020, 69(4): 040502. doi: 10.7498/aps.69.20191342
    [2] 王凤阳, 胡仁志, 谢品华, 王怡慧, 陈浩, 张国贤, 刘文清. 基于同步光解的OH自由基标定方法研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200153
    [3] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [4] 杨永霞, 李玉叶, 古华光. Pre-Bötzinger复合体的从簇到峰放电的同步转迁及分岔机制. 物理学报, 2020, 69(4): 040501. doi: 10.7498/aps.69.20191509
    [5] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管. 物理学报, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
  • 引用本文:
    Citation:
计量
  • 文章访问数:  390
  • PDF下载量:  421
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-31
  • 修回日期:  2017-11-23
  • 刊出日期:  2018-03-05

一种具有隐藏吸引子的分数阶混沌系统的动力学分析及有限时间同步

  • 1. 西安交通大学电气工程学院, 电力设备电气绝缘国家重点实验室, 西安 710049
  • 通信作者: 郑广超, 342267105@qq.com
    基金项目: 

    国家自然科学基金创新研究群体科学基金(批准号:51521065)资助的课题.

摘要: 对于具有隐藏吸引子的混沌系统,既有文献大多只针对整数阶系统进行分析与控制研究.基于Sprott E系统,构建了仅有一个稳定平衡点的分数阶混沌系统,通过相位图、Poincare映射和功率谱等,分析了该系统的基本动力学特征.结果显示,该系统展现出了丰富而复杂的动力学特性,且通过随阶次变化的分岔图可知,系统在不同阶次下呈现出周期运动、倍周期运动和混沌运动等状态,这些动力学特征对于保密通信等实际工程领域有重要的研究价值.针对该具有隐藏吸引子的分数阶系统,应用分数阶系统有限时间稳定性理论设计控制器,对系统进行有限时间同步控制,并通过数值仿真验证了其有效性.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回