搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究

范伟利 杨宗林 张振雲 齐俊杰

高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究

范伟利, 杨宗林, 张振雲, 齐俊杰
PDF
导出引用
导出核心图
  • 碳基钙钛矿太阳能电池因稳定性高、成本低廉而备受关注,但由于钙钛矿与碳电极之间能级匹配度不高,界面阻力大而导致效率不及金属基钙钛矿太阳能电池.本文制备了碳基无空穴传输层FTO/c-TiO2/m-TiO2/CH3NH3PbI3/Carbon电池结构.通过对介孔二氧化钛层、钙钛矿层厚度进行优化,并对钙钛矿的薄膜形貌及钙钛矿激发电子寿命、可见光吸收度、载流子的提取与分离等进行深度分析,讨论了电池效率提升的内在机理.当介孔氧化钛层和钙钛矿层达到最优厚度时,钙钛矿太阳能电池获得了开路电压(Voc)为0.93 V、电流密度(Jsc)为21.75 mA/cm2、填充因子为55%、光电转化效率达到11.11%.同时对电池进行了稳定性研究,在室温湿度为40%–50%的条件下放置15 d电池性能依旧稳定保持原来的95%,优于金属基钙钛矿太阳能电池,从而为碳电极钙钛矿太阳能电池的商业化发展提供了可能.
      通信作者: 齐俊杰, junjieqi@ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51572025)和国家基金(批准号:41422050303)经费资助的课题.
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 122 8604

    [3]

    Burschka J, Pellet N, Moon S, J Humphry-Baker R, Gao P, Nazeeruddin M K, Gratzel M 2013 Nature 499 316

    [4]

    Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, H Yoo, Shin H, Ahn N, Choi M, Kim D, Park N G 2016 Nat. Energy 1 16081

    [5]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am. Chem. Soc. 134 17396

    [6]

    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584

    [7]

    Cai L, Zhong M 2016 Acta Phys. Sin. 65 237902 (in Chinese) [柴磊, 钟敏 2016 物理学报 65 237902]

    [8]

    D’Innocenzo V, Grancini G, Alcocer M J P, Kandada A R S, Stranks S D, Lee M M, Lanzani G, Snaith H J, Petrozza A 2014 Nat. Commun. 5 3586

    [9]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [10]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [11]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [12]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S i 2017 Science 356 1376

    [13]

    Nam J J, Hyejin N, Eui H J, Tae-Youl Y, Yong G L, Geunjin K, Hee-Won S, Sang I S, Jaemin L, Jangwon S 2018 Nat. Energy 3 682

    [14]

    Wei Z H, Yan K Y, Chen H N, Yi Y, Zhang T, Long X, Li J K, Zhang L X, Wang J N, Yang S H 2014 Energy Environ. Sci. 7 3326

    [15]

    Zhang L, Liu T, Liu L, Hu M, Yang Y, Mei A, Han H W 2015 J. Mater. Chem. A 3 9165

    [16]

    Yang Y Y, Xiao J Y, Wei H Y, Zhu L F, Li D M, Luo Y H, Wu H J, Meng Q B 2014 RSC Adv. 4 52825

    [17]

    Zhang F, Yang X, Wang H, Cheng M, Zhao J, Sun L 2014 ACS Appl. Mater. Interfaces 18 16140

    [18]

    Ku Z, Rong Y, Xu M, Liu T, Han H 2013 Sci. Rep. 3 3132

    [19]

    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Gratzel M, Han H 2014 Science 6194 295

    [20]

    Xu X, Liu Z, Zuo Z, Zhang M, Zhao Z, Shen Y, Zhou H, Chen Q, Yang Y, Wang M 2015 Nano Lett. 15 2402

    [21]

    Cao K, Zuo Z, Cui J, Shen Y, Moehl T, Zakeeruddin S M, Gratzel M, Wang M 2015 Nano Energy 17 171

    [22]

    Zhang F, Yang X, Cheng M, Wang W, Sun L 2016 Nano Energy 20 108

    [23]

    Chen H, Wei Z, He H, Zheng X, Wong K S, Yang S 2016 Adv. Energy Mater. 6 1502087

    [24]

    Zhang F, Yang X, Wang H, Cheng M, Zhao J, Sun L 2014 ACS Appl. Mater. Interfaces 6 16140

    [25]

    Anaraki E H, Kermanpur A, Steier L, Domanski K, Matsui T, Tress W, Saliba M, Abate A, Gratzel M, Hagfeldt A, Correa-Baena J 2016 Energy Environ. Sci. 9 3128

    [26]

    Reese M O, Gevorgyan S A, Jørgensen M, Bundgaard E, Kurtz S R, Ginley D S, Olson D C, Lloyd M T, Morvillo P, Katz E A, Elschner, Haillant A O, Currier T R, Shrotriya V, Hermenau M, Riede M, Kirov K R, Trimmel G, Krebs F C 2011 Sol. Energy Mater. Sol. Cells 95 1253

    [27]

    Berhe T A, Su W N, Che C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Energy Environ. Sci. 9 323

  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 122 8604

    [3]

    Burschka J, Pellet N, Moon S, J Humphry-Baker R, Gao P, Nazeeruddin M K, Gratzel M 2013 Nature 499 316

    [4]

    Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, H Yoo, Shin H, Ahn N, Choi M, Kim D, Park N G 2016 Nat. Energy 1 16081

    [5]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am. Chem. Soc. 134 17396

    [6]

    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584

    [7]

    Cai L, Zhong M 2016 Acta Phys. Sin. 65 237902 (in Chinese) [柴磊, 钟敏 2016 物理学报 65 237902]

    [8]

    D’Innocenzo V, Grancini G, Alcocer M J P, Kandada A R S, Stranks S D, Lee M M, Lanzani G, Snaith H J, Petrozza A 2014 Nat. Commun. 5 3586

    [9]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [10]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [11]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [12]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S i 2017 Science 356 1376

    [13]

    Nam J J, Hyejin N, Eui H J, Tae-Youl Y, Yong G L, Geunjin K, Hee-Won S, Sang I S, Jaemin L, Jangwon S 2018 Nat. Energy 3 682

    [14]

    Wei Z H, Yan K Y, Chen H N, Yi Y, Zhang T, Long X, Li J K, Zhang L X, Wang J N, Yang S H 2014 Energy Environ. Sci. 7 3326

    [15]

    Zhang L, Liu T, Liu L, Hu M, Yang Y, Mei A, Han H W 2015 J. Mater. Chem. A 3 9165

    [16]

    Yang Y Y, Xiao J Y, Wei H Y, Zhu L F, Li D M, Luo Y H, Wu H J, Meng Q B 2014 RSC Adv. 4 52825

    [17]

    Zhang F, Yang X, Wang H, Cheng M, Zhao J, Sun L 2014 ACS Appl. Mater. Interfaces 18 16140

    [18]

    Ku Z, Rong Y, Xu M, Liu T, Han H 2013 Sci. Rep. 3 3132

    [19]

    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Gratzel M, Han H 2014 Science 6194 295

    [20]

    Xu X, Liu Z, Zuo Z, Zhang M, Zhao Z, Shen Y, Zhou H, Chen Q, Yang Y, Wang M 2015 Nano Lett. 15 2402

    [21]

    Cao K, Zuo Z, Cui J, Shen Y, Moehl T, Zakeeruddin S M, Gratzel M, Wang M 2015 Nano Energy 17 171

    [22]

    Zhang F, Yang X, Cheng M, Wang W, Sun L 2016 Nano Energy 20 108

    [23]

    Chen H, Wei Z, He H, Zheng X, Wong K S, Yang S 2016 Adv. Energy Mater. 6 1502087

    [24]

    Zhang F, Yang X, Wang H, Cheng M, Zhao J, Sun L 2014 ACS Appl. Mater. Interfaces 6 16140

    [25]

    Anaraki E H, Kermanpur A, Steier L, Domanski K, Matsui T, Tress W, Saliba M, Abate A, Gratzel M, Hagfeldt A, Correa-Baena J 2016 Energy Environ. Sci. 9 3128

    [26]

    Reese M O, Gevorgyan S A, Jørgensen M, Bundgaard E, Kurtz S R, Ginley D S, Olson D C, Lloyd M T, Morvillo P, Katz E A, Elschner, Haillant A O, Currier T R, Shrotriya V, Hermenau M, Riede M, Kirov K R, Trimmel G, Krebs F C 2011 Sol. Energy Mater. Sol. Cells 95 1253

    [27]

    Berhe T A, Su W N, Che C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Energy Environ. Sci. 9 323

  • [1] 杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇. 湿度环境下钙钛矿太阳能电池薄膜微结构演化的同步辐射原位实时研究. 物理学报, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [2] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [3] 王栋, 朱慧敏, 周忠敏, 王在伟, 吕思刘, 逄淑平, 崔光磊. 溶剂对钙钛矿薄膜形貌和结晶性的影响研究. 物理学报, 2015, 64(3): 038403. doi: 10.7498/aps.64.038403
    [4] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [5] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [6] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [7] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [8] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [9] 曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏. 平面型钙钛矿太阳能电池温度相关的光伏性能时间响应特性. 物理学报, 2016, 65(18): 188801. doi: 10.7498/aps.65.188801
    [10] 李晓果, 张欣, 施则骄, 张海娟, 朱成军, 詹义强. n-i-p结构钙钛矿太阳能电池界面钝化的研究进展. 物理学报, 2019, 68(15): 158803. doi: 10.7498/aps.68.20190468
    [11] 曾广根, 郑家贵, 黎 兵, 雷 智, 武莉莉, 蔡亚平, 李 卫, 张静全, 蔡 伟, 冯良桓. 具有高阻抗本征SnO2过渡层的CdS/CdTe多晶薄膜太阳电池. 物理学报, 2006, 55(9): 4854-4859. doi: 10.7498/aps.55.4854
    [12] 刘毅, 徐征, 赵谡玲, 乔泊, 李杨, 秦梓伦, 朱友勤. 双添加剂处理电子传输层富勒烯衍生物[6,6]-苯基-C61丁酸甲酯对钙钛矿太阳能电池性能的影响. 物理学报, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [13] 黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿. 石墨烯衍生物作为有机太阳能电池界面材料的研究进展. 物理学报, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
    [14] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展. 物理学报, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [15] 李飞, 肖刘, 刘濮鲲, 袁广江, 易红霞, 万晓声. 行波管中多级降压收集极效率评估的研究. 物理学报, 2012, 61(10): 102901. doi: 10.7498/aps.61.102901
    [16] 李倩文, 李莹, 张荣, 卢灿灿, 白龙. 线性与非线性传热过程的Curzon-Ahlborn热机在任意功率时的效率. 物理学报, 2017, 66(13): 130502. doi: 10.7498/aps.66.130502
    [17] 陈宝振, 黄祖洽. 飞秒强激光在充气毛细管中产生三次谐波的效率. 物理学报, 2005, 54(1): 113-116. doi: 10.7498/aps.54.113
    [18] 郑世燕. 以广义Redlich-Kwong气体为工质的不可逆回热式斯特林热机循环输出功率和效率. 物理学报, 2014, 63(17): 170508. doi: 10.7498/aps.63.170508
    [19] 刘晓敏, 李亦回, 王兴涛, 赵一新. 有机铵盐表面稳定化CsPbI2Br全无机钙钛矿. 物理学报, 2019, 68(15): 158805. doi: 10.7498/aps.68.20190303
    [20] 肖尧, 郑建风. 复杂交通运输网络上的拥挤与效率问题研究. 物理学报, 2013, 62(17): 178902. doi: 10.7498/aps.62.178902
  • 引用本文:
    Citation:
计量
  • 文章访问数:  632
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-30
  • 修回日期:  2018-08-24
  • 刊出日期:  2018-11-20

高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究

  • 1. 北京科技大学材料科学与工程学院, 北京 100083
  • 通信作者: 齐俊杰, junjieqi@ustb.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51572025)和国家基金(批准号:41422050303)经费资助的课题.

摘要: 碳基钙钛矿太阳能电池因稳定性高、成本低廉而备受关注,但由于钙钛矿与碳电极之间能级匹配度不高,界面阻力大而导致效率不及金属基钙钛矿太阳能电池.本文制备了碳基无空穴传输层FTO/c-TiO2/m-TiO2/CH3NH3PbI3/Carbon电池结构.通过对介孔二氧化钛层、钙钛矿层厚度进行优化,并对钙钛矿的薄膜形貌及钙钛矿激发电子寿命、可见光吸收度、载流子的提取与分离等进行深度分析,讨论了电池效率提升的内在机理.当介孔氧化钛层和钙钛矿层达到最优厚度时,钙钛矿太阳能电池获得了开路电压(Voc)为0.93 V、电流密度(Jsc)为21.75 mA/cm2、填充因子为55%、光电转化效率达到11.11%.同时对电池进行了稳定性研究,在室温湿度为40%–50%的条件下放置15 d电池性能依旧稳定保持原来的95%,优于金属基钙钛矿太阳能电池,从而为碳电极钙钛矿太阳能电池的商业化发展提供了可能.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回