搜索

x
中国物理学会期刊

急冷快速凝固过程中液相流动与组织形成的相关规律

CSTR: 32037.14.aps.53.1909

Liquid phase flow and microstructure formation during rapid solidification

CSTR: 32037.14.aps.53.1909
PDF
导出引用
  • 研究了Fe58wt%Sn过偏晶合金的急冷快速凝固和组织形成特征. 实验发现, FeSn过偏晶合金的急冷快速凝固组织由规则排布的纤维状β-Sn相和分布其间的α-Fe相及少量金属间化合物相组成, β-Sn相的几何排列方向与合金条带表面成0—15°的夹角.根据急冷条件下金属熔体的热传导方程和Navier-Stokes方程, 对过偏晶合金的凝固行为和组织形成过程进行了理论分析, 揭示出熔体内部的动量传输对过偏晶合金的液相分离行为具有显著的影响.两相分离发生于液池底部约200μm的急冷区内, 分离的L2液滴在辊面驱

     

    The characteristics of rapid solidification and microstructure formation of Fe-50wt%Sn hypermonotectic alloy heve been investigated. The rapid solidification microstructure is composed of regular arrays of fiberlike βSn phase, αFe phase distributed in fiber interspacings, and a small amount of metallic compounds. The angle between the fiber array and ribbon surface is within the range of 0—15°. According to the heat transfer equation and NavierStokes equation under melt-spinning condition, the solidification behaviors and microstructure formation processes are analyzed theoretically. It is revealed that the liquid phase flow has a remarkable effect on the phase separation of hypermonotectic alloy. This separation behavior occurs in the bottom of the melt puddle, which is about 200μm from roller surface, where the shapes of separated L2 droplets are deformed by shear stress. The collision/stretch of the separated L2 droplets finally leads to the formation of fiberlike microstructures. Due to the high cooling rate, the peritectic transformation at elevated temperatures is suppressed, thus resulting in the existence of some metastable phase at room temperature.

     

    目录

    /

    返回文章
    返回