搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

协变谐振子的重子结构模型及其K—S变换求解

龙君彦

引用本文:
Citation:

协变谐振子的重子结构模型及其K—S变换求解

龙君彦
cstr: 32037.14.aps.43.717

KUSTANNHEIMO -STIEFEI TRANSFORMATION OF BARY-ON STRUCTURE MODEL WITH A FOUR-DIMENSI-ONAL COVARIANT HARMONIC OSCILLATOR

LONG JUN-YAN
cstr: 32037.14.aps.43.717
PDF
导出引用
  • 假定重子中轻层子间不存在三体力,并把满足约束Pi2+U(x2)+mi2=0(i=1,2)的二质点组的相对论力学应用于重子的SU3模型,取U(x2)形为α+bx2,通过适当坐标平移,可以将重子中的内部运动等效为两个协变谐振子。采用Kustanheimo-Stiel变换(简称K—S变换),可将它们化为两个三维氢原子问题。这样,在求解中能
    In this paper, we assume there exist no three-body forces in a baryon. So that the constraint equations for two particles Pi2+U(x2)+mi2=0 (i=1,2 )can be applied to the SU3 model of the baryon. Next, we take U(x2) as a+bx2. By use of a proper coordinate transformation, the internal motion of the baryon can be reduced to double covariant harmonic oscillators. From the Kustannheimo-Stiefel transformation, the problem of a covariant harmonic oscillator can be transformed to that of a threedimensional hydrogen atom with constranits. On that basis, the difficulty of the excitation of the time degree of freedom can be avoided naturally and the mass-squared formula for baryons can be obtained.
计量
  • 文章访问数:  8064
  • PDF下载量:  580
  • 被引次数: 0
出版历程
  • 收稿日期:  1993-06-04
  • 刊出日期:  1994-05-20

/

返回文章
返回