搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于偏振旋转光反馈下的外光注入VCSEL产生高性能毫米波

陈兴华 林晓东 吴正茂 樊利 曹体 夏光琼

基于偏振旋转光反馈下的外光注入VCSEL产生高性能毫米波

陈兴华, 林晓东, 吴正茂, 樊利, 曹体, 夏光琼
PDF
导出引用
  • 本文提出一种基于偏振旋转光反馈下的外光注入垂直腔 表面发射激光器(VCSEL)产生高性能毫米波的方案, 并利用描述外部扰动下VCSEL动态特性的自旋反转模型(SFM), 对所产生的毫米波的特性进行了数值研究. 研究结果表明: 一个受到主VCSEL(M-VCSEL)光注入的副VCSEL(S-VCSEL)在一定条件下可以产生单周期(P1)振荡, 即在光波上调制了一个微波信号. 通过调节外光注入强度i以及S-VCSEL与M-VCSEL之间频率失谐, 可以获得频率在3060 GHz范围内连续可调的毫米波信号. 在外光注入VCSEL中引入偏振旋转光反馈, 通过选取合适的反馈强度f以及反馈延迟时间, 产生的毫米波信号的线宽可以得到明显窄化. 对于光注入S-VCSEL所产生的线宽为5.509 MHz的毫米波, 在引入偏振旋转光反馈后, 毫米波线宽可以降低到230.2 kHz. 本文的研究对高速光载无线(RoF)系统中优质毫米波信号的获取具有一定的参考意义.
    • 基金项目: 国家自然科学基金(批准号: 60978003, 61078003, 61178011), 重庆市自然科学基金(批准号: CSTC2011jjA40035, CSTC2012jjB40011), 西南大学中央高校基本科研业务费专项资金(批准号: XDJK2010C019, XDJK2009B010)和毫米波国家重点实验室开放课题(批准号: K201109)资助的课题.
    [1]

    Cooper A J 1990 Electron. Lett. 26 2054

    [2]

    Capmany J, Novak D 2007 Nature Photon. 1 319

    [3]

    Kim A, Joo Y H, Kim Y 2004 IEEE Trans. Consumer Electron. 50 517

    [4]

    Guennec Y L, Maury G, Yao J P, Cabon B 2006 J. Lightwave Technol. 24 1277

    [5]

    Davide D, Giovanni T, Pier F, Luigi T 2011 Optics Commun. 284 2751

    [6]

    Lin C T, Chen J, Shih P T 2010 J. Lightwave Technol. 28 2296

    [7]

    Kjebon O, Schatz R, Lourdudoss S, Nilsson S, StAlnacke B, Backbom L 1997 Electron. Lett. 33 488

    [8]

    Novak D, Ahmed Z, Waterhouse R B, Tucker R S 1995 IEEE Trans. Microwave Theory Tech. 43 2257

    [9]

    Derickson D J, Helkey R J, Mar A, Wasserbauer J G, Wey Y G, Bowers J E 1992 IEEE MTT-S Int. Microw. Symp. Dig. 2 753

    [10]

    Genest J, Chamberland M, Tremblay P, Tetu M 1997 IEEE J. Quantum Electron. 33 989

    [11]

    Johansson L A, Seeds A J 2003 J. Lightwave Technol. 21 511

    [12]

    Wake D, Lima C R, Davies P A 1995 IEEE Trans. Microwave Theory Tech. 43 2270

    [13]

    Chan S C, Diaz R, Liu J M 2008 Opt. Quantum Electron. 40 83

    [14]

    Simpson T B, Doft F 1999 IEEE Photon. Technol. Lett. 11 1476

    [15]

    Chan S C, Liu J M 2006 IEEE J. Quantum Electron. 42 699

    [16]

    Simpson T B 1999 Opt. Commun. 170 93

    [17]

    Kaszubowska A, Anandarajah P, Barry L P 2002 IEEE Photon. Technol. Lett. 14 233

    [18]

    Chan S C, Hwang S K, Liu J M 2007 Opt. Express 15 14921

    [19]

    Niu S X, Wang Y C, He H C, Zhang M J 2009 Acta Phys. Sin. 58 7241(in Chinese) [牛生晓, 王云才, 贺虎成, 张明江 2009 物理学报 58 7241]

    [20]

    Xie H Y, Jin D Y, He L J, Zhang W, Wang L, Zhang W R, Wang W 2008 Acta Phys. Sin. 57 4558 (in Chinense) [谢红云, 金冬月, 何莉剑, 张蔚, 王路, 张万荣, 王圩 2008 物理学报 57 4558]

    [21]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [22]

    Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J Quantum Electron. 33 765

    [23]

    Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 Appl. Opt. 46 7262

    [24]

    Wang X F, Xia G Q, Wu Z M 2009 Acta Phys. Sin. 58 4669 (in Chinese) [王小发, 夏光琼, 吴正茂 2009 物理学报 58 4669]

    [25]

    Yang B X, Xia G Q, Lin X D, Wu Z M 2009 Acta Phys. Sin. 58 1480 (in Chinese) [杨炳星, 夏光琼, 林晓东, 吴正茂 2009 物理学报 58 1480]

    [26]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [27]

    Leng Z M, Xia G Q, Wu Z M 2009 Optoelectron. & Adv. Mater. - Rap. Commun. 3 644

    [28]

    Chan S C, Liu J M 2004 IEEE J. Sel. Topics Quantum Electron. 10 1025

    [29]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. 44 1728

    [30]

    Simpson T B, Liu J M, Gavielides A 1996 IEEE J Quantum Electron. 32 1456

    [31]

    Hwang S K, Liu J M, White J K 2004 IEEE J. Sel. Topics Quantum Electron. 10 974

  • [1]

    Cooper A J 1990 Electron. Lett. 26 2054

    [2]

    Capmany J, Novak D 2007 Nature Photon. 1 319

    [3]

    Kim A, Joo Y H, Kim Y 2004 IEEE Trans. Consumer Electron. 50 517

    [4]

    Guennec Y L, Maury G, Yao J P, Cabon B 2006 J. Lightwave Technol. 24 1277

    [5]

    Davide D, Giovanni T, Pier F, Luigi T 2011 Optics Commun. 284 2751

    [6]

    Lin C T, Chen J, Shih P T 2010 J. Lightwave Technol. 28 2296

    [7]

    Kjebon O, Schatz R, Lourdudoss S, Nilsson S, StAlnacke B, Backbom L 1997 Electron. Lett. 33 488

    [8]

    Novak D, Ahmed Z, Waterhouse R B, Tucker R S 1995 IEEE Trans. Microwave Theory Tech. 43 2257

    [9]

    Derickson D J, Helkey R J, Mar A, Wasserbauer J G, Wey Y G, Bowers J E 1992 IEEE MTT-S Int. Microw. Symp. Dig. 2 753

    [10]

    Genest J, Chamberland M, Tremblay P, Tetu M 1997 IEEE J. Quantum Electron. 33 989

    [11]

    Johansson L A, Seeds A J 2003 J. Lightwave Technol. 21 511

    [12]

    Wake D, Lima C R, Davies P A 1995 IEEE Trans. Microwave Theory Tech. 43 2270

    [13]

    Chan S C, Diaz R, Liu J M 2008 Opt. Quantum Electron. 40 83

    [14]

    Simpson T B, Doft F 1999 IEEE Photon. Technol. Lett. 11 1476

    [15]

    Chan S C, Liu J M 2006 IEEE J. Quantum Electron. 42 699

    [16]

    Simpson T B 1999 Opt. Commun. 170 93

    [17]

    Kaszubowska A, Anandarajah P, Barry L P 2002 IEEE Photon. Technol. Lett. 14 233

    [18]

    Chan S C, Hwang S K, Liu J M 2007 Opt. Express 15 14921

    [19]

    Niu S X, Wang Y C, He H C, Zhang M J 2009 Acta Phys. Sin. 58 7241(in Chinese) [牛生晓, 王云才, 贺虎成, 张明江 2009 物理学报 58 7241]

    [20]

    Xie H Y, Jin D Y, He L J, Zhang W, Wang L, Zhang W R, Wang W 2008 Acta Phys. Sin. 57 4558 (in Chinense) [谢红云, 金冬月, 何莉剑, 张蔚, 王路, 张万荣, 王圩 2008 物理学报 57 4558]

    [21]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [22]

    Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J Quantum Electron. 33 765

    [23]

    Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 Appl. Opt. 46 7262

    [24]

    Wang X F, Xia G Q, Wu Z M 2009 Acta Phys. Sin. 58 4669 (in Chinese) [王小发, 夏光琼, 吴正茂 2009 物理学报 58 4669]

    [25]

    Yang B X, Xia G Q, Lin X D, Wu Z M 2009 Acta Phys. Sin. 58 1480 (in Chinese) [杨炳星, 夏光琼, 林晓东, 吴正茂 2009 物理学报 58 1480]

    [26]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [27]

    Leng Z M, Xia G Q, Wu Z M 2009 Optoelectron. & Adv. Mater. - Rap. Commun. 3 644

    [28]

    Chan S C, Liu J M 2004 IEEE J. Sel. Topics Quantum Electron. 10 1025

    [29]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. 44 1728

    [30]

    Simpson T B, Liu J M, Gavielides A 1996 IEEE J Quantum Electron. 32 1456

    [31]

    Hwang S K, Liu J M, White J K 2004 IEEE J. Sel. Topics Quantum Electron. 10 974

  • 引用本文:
    Citation:
计量
  • 文章访问数:  3772
  • PDF下载量:  651
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-20
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

基于偏振旋转光反馈下的外光注入VCSEL产生高性能毫米波

  • 1. 西南大学物理科学与技术学院, 重庆 400715;
  • 2. 东南大学毫米波国家重点实验室, 南京 210096
    基金项目: 

    国家自然科学基金(批准号: 60978003, 61078003, 61178011), 重庆市自然科学基金(批准号: CSTC2011jjA40035, CSTC2012jjB40011), 西南大学中央高校基本科研业务费专项资金(批准号: XDJK2010C019, XDJK2009B010)和毫米波国家重点实验室开放课题(批准号: K201109)资助的课题.

摘要: 本文提出一种基于偏振旋转光反馈下的外光注入垂直腔 表面发射激光器(VCSEL)产生高性能毫米波的方案, 并利用描述外部扰动下VCSEL动态特性的自旋反转模型(SFM), 对所产生的毫米波的特性进行了数值研究. 研究结果表明: 一个受到主VCSEL(M-VCSEL)光注入的副VCSEL(S-VCSEL)在一定条件下可以产生单周期(P1)振荡, 即在光波上调制了一个微波信号. 通过调节外光注入强度i以及S-VCSEL与M-VCSEL之间频率失谐, 可以获得频率在3060 GHz范围内连续可调的毫米波信号. 在外光注入VCSEL中引入偏振旋转光反馈, 通过选取合适的反馈强度f以及反馈延迟时间, 产生的毫米波信号的线宽可以得到明显窄化. 对于光注入S-VCSEL所产生的线宽为5.509 MHz的毫米波, 在引入偏振旋转光反馈后, 毫米波线宽可以降低到230.2 kHz. 本文的研究对高速光载无线(RoF)系统中优质毫米波信号的获取具有一定的参考意义.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回