搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

远程干涉型光纤传感系统的非线性相位噪声分析

陈伟 孟洲 周会娟 罗洪

远程干涉型光纤传感系统的非线性相位噪声分析

陈伟, 孟洲, 周会娟, 罗洪
PDF
导出引用
  • 以远程干涉型光纤传感系统为背景, 研究了系统非线性相位噪声构成, 对各构成要素的具体影响进行了详细分析和综合评价, 简要讨论了噪声抑制方案. 研究表明, 系统相位噪声主要包括强度噪声转化而来的相位噪声、非线性效应引起激光 线宽展宽导致的相位噪声以及自相位调制和交叉相位调制引入的相位噪声. 受激布里渊散射和四波混频可引入强度噪声并转化为相位噪声, 对于探测带宽较窄的光纤传感系统, 四波混频引入的该部分噪声往往可以忽略. 受激布里渊散射、四波混频和调制不稳定性都可引起激光线宽展宽从而造成相位噪声的增大. 当系统信道数目较多时, 交叉相位调制对相位噪声的贡献不可忽略. 所得结论对远程干涉型光纤传感系统的实际应用具有重要的指导意义.
    • 基金项目: 国家自然科学基金(批准号: 61177073);光电信息与传感技术广东普通高 校重点实验室开放研究基金(批准号: gdol201101); 湖南省研究生创新基金(批准号: CX2011B033)和国防科学技术大学研究生院创 新基金(批准号: B110703)资助的课题.
    [1]

    Crickmore R, Cranch G A, Kirkendall C K, Daley K, Motley S, Bautista A, Salzano J, Nash P 2003 IEEE Photon. Technol. Lett. 10 1579

    [2]

    Clay K K, Dandrige A 2004 J. Phys. D: Appl. Phys. 37 197

    [3]

    Kringlebotn J T, Naksrtad H, Eriksrud M 2009 Proc. SPIE 7503 75037U

    [4]

    Nash P, Strudley A, Crickmore R, DeFreitas J 2009 Proc. SPIE 7503 75037T

    [5]

    Zhang J, Pan W, Yan L S, Luo B 2010 Acta Phys. Sin. 59 7002 (in Chinese) [张婧, 潘炜, 闫连山, 罗斌 2010 物理学报 59 7002]

    [6]

    Sugie T 1991 J. Lightwave Technol. 9 1145

    [7]

    van Deventer M O, van der Tol J J G M, Boot A J 1994 IEEE Photon. Technol. Lett. 6 291

    [8]

    Waarts R G, Braun R P 1985 Electron. Lett. 21 1114

    [9]

    Djupsjöbacka A, Jacobsen G, Tromborg B 2000 J. Lightwave Technol. 18 416

    [10]

    Maeda M W, Sessa W B, Way W I, Yi-Yan A, Curtis L, Spicer R, Laming R I 1990 J. Lightwave Technol. 8 1402

    [11]

    Inoue K, Nakanishi K, Oda K, Toba H 1994 J. Lightwave Technol. 12 1423

    [12]

    Du J X 2009 Acta Phys. Sin. 58 1046 (in Chinese) [杜建新 2009 物理学报 58 1046]

    [13]

    Chen W, Meng Z 2012 Chin. Opt. Lett. 10 020603

    [14]

    Chen W, Meng Z 2011 Proc. SPIE 7753 77532G

    [15]

    Chen W, Meng Z 2011 Opt. Laser Technol. 43 1270

    [16]

    Meng Z, Hu Y M, Xiong S D, Stewart G, Whitenett G, Culshaw B 2005 Appl. Opt. 44 3425

    [17]

    Dandridge A, Tveten A B, Giallorenzi T G 1982 IEEE J. Quantum Electron. 18 1647

    [18]

    Gaeta A L, Boyd R W 1991 Phys. Rev. A 44 3205

    [19]

    Gordon J P, Mollenauer L F 1990 Opt. Lett. 15 1351

    [20]

    Agrawal G P (Translated by Jia D F et al.) 2002 Nonlinear Fiber Optics and Applications of Nonlinear Fiber Optics (Beijing: Publishing House of Electronics Industry) pp88-90, 165-166, 488-490 (in Chinese) [阿戈沃著 贾东方等译 2002 非线性光纤光学原理及应用 (北京: 电子工业出版社) 第88-90页, 第165-166页, 第488-490页]

    [21]

    Chen W, Meng Z, Zhou H J, Luo H 2012 Chin. Phys. B 21 034212

    [22]

    Hill K O, Johnson D C, Kawasaki B S, MacDonald R I 1978 J. Appl. Phys. 49 5098

    [23]

    Alasia D, Herraez M G, Abrardi L, Lopez S M, Thevenaz L 2005 Proc. SPIE 5855 587

    [24]

    Wang X L, Zhou P, Ma Y X, Ma H T, Li X, Xu X J, Zhao Y J 2011 Acta Phys. Sin. 60 084203 (in Chinese) [王小林, 周朴, 马阎星, 马浩统, 李霄, 许晓军, 赵伊君 2011 物理学报 60 084203]

    [25]

    Chen W, Meng Z 2010 Chin. Opt. Lett. 8 1124

    [26]

    Chen W, Meng Z 2011 Chinese J. Lasers 38 0305002 (in Chinese) [陈伟, 孟洲 2011 中国激光 38 0305002]

    [27]

    Hansryd J, Dross F, Westlund M, Andrekson P A, Knudsen S N 2001 J. Lightwave Technol. 19 1691

    [28]

    Yoshizawa N, Imai T 1993 J. Lightwave Technol. 11 1518

    [29]

    Shiraki K, Ohashi M, Tateda M 1995 Electron. Lett. 31 668

    [30]

    de Oliveira C A S, Jen C K, Shang A, Saravanos C 1993 J. Opt. Soc. Am. B 10 969

    [31]

    Li M J, Chen X, Wang J, Gray S, Liu A, Demeritt J A, Ruffin A B, Crowley A M, Walton D T, Zenteno L A 2007 Opt. Express 15 8290

    [32]

    Chen W, Meng Z 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165402

    [33]

    Forghieri F, Tkach R W, Chraplyvy A R 1995 J. Lightwave Technol. 13 889

    [34]

    Chraplyvy A R, Gnauck A H, Tkach R W, Derosier R M 1993 IEEE Photon. Technol. Lett. 5 1233

    [35]

    Inoue K 1993 J. Lightwave Technol. 11 2116

  • [1]

    Crickmore R, Cranch G A, Kirkendall C K, Daley K, Motley S, Bautista A, Salzano J, Nash P 2003 IEEE Photon. Technol. Lett. 10 1579

    [2]

    Clay K K, Dandrige A 2004 J. Phys. D: Appl. Phys. 37 197

    [3]

    Kringlebotn J T, Naksrtad H, Eriksrud M 2009 Proc. SPIE 7503 75037U

    [4]

    Nash P, Strudley A, Crickmore R, DeFreitas J 2009 Proc. SPIE 7503 75037T

    [5]

    Zhang J, Pan W, Yan L S, Luo B 2010 Acta Phys. Sin. 59 7002 (in Chinese) [张婧, 潘炜, 闫连山, 罗斌 2010 物理学报 59 7002]

    [6]

    Sugie T 1991 J. Lightwave Technol. 9 1145

    [7]

    van Deventer M O, van der Tol J J G M, Boot A J 1994 IEEE Photon. Technol. Lett. 6 291

    [8]

    Waarts R G, Braun R P 1985 Electron. Lett. 21 1114

    [9]

    Djupsjöbacka A, Jacobsen G, Tromborg B 2000 J. Lightwave Technol. 18 416

    [10]

    Maeda M W, Sessa W B, Way W I, Yi-Yan A, Curtis L, Spicer R, Laming R I 1990 J. Lightwave Technol. 8 1402

    [11]

    Inoue K, Nakanishi K, Oda K, Toba H 1994 J. Lightwave Technol. 12 1423

    [12]

    Du J X 2009 Acta Phys. Sin. 58 1046 (in Chinese) [杜建新 2009 物理学报 58 1046]

    [13]

    Chen W, Meng Z 2012 Chin. Opt. Lett. 10 020603

    [14]

    Chen W, Meng Z 2011 Proc. SPIE 7753 77532G

    [15]

    Chen W, Meng Z 2011 Opt. Laser Technol. 43 1270

    [16]

    Meng Z, Hu Y M, Xiong S D, Stewart G, Whitenett G, Culshaw B 2005 Appl. Opt. 44 3425

    [17]

    Dandridge A, Tveten A B, Giallorenzi T G 1982 IEEE J. Quantum Electron. 18 1647

    [18]

    Gaeta A L, Boyd R W 1991 Phys. Rev. A 44 3205

    [19]

    Gordon J P, Mollenauer L F 1990 Opt. Lett. 15 1351

    [20]

    Agrawal G P (Translated by Jia D F et al.) 2002 Nonlinear Fiber Optics and Applications of Nonlinear Fiber Optics (Beijing: Publishing House of Electronics Industry) pp88-90, 165-166, 488-490 (in Chinese) [阿戈沃著 贾东方等译 2002 非线性光纤光学原理及应用 (北京: 电子工业出版社) 第88-90页, 第165-166页, 第488-490页]

    [21]

    Chen W, Meng Z, Zhou H J, Luo H 2012 Chin. Phys. B 21 034212

    [22]

    Hill K O, Johnson D C, Kawasaki B S, MacDonald R I 1978 J. Appl. Phys. 49 5098

    [23]

    Alasia D, Herraez M G, Abrardi L, Lopez S M, Thevenaz L 2005 Proc. SPIE 5855 587

    [24]

    Wang X L, Zhou P, Ma Y X, Ma H T, Li X, Xu X J, Zhao Y J 2011 Acta Phys. Sin. 60 084203 (in Chinese) [王小林, 周朴, 马阎星, 马浩统, 李霄, 许晓军, 赵伊君 2011 物理学报 60 084203]

    [25]

    Chen W, Meng Z 2010 Chin. Opt. Lett. 8 1124

    [26]

    Chen W, Meng Z 2011 Chinese J. Lasers 38 0305002 (in Chinese) [陈伟, 孟洲 2011 中国激光 38 0305002]

    [27]

    Hansryd J, Dross F, Westlund M, Andrekson P A, Knudsen S N 2001 J. Lightwave Technol. 19 1691

    [28]

    Yoshizawa N, Imai T 1993 J. Lightwave Technol. 11 1518

    [29]

    Shiraki K, Ohashi M, Tateda M 1995 Electron. Lett. 31 668

    [30]

    de Oliveira C A S, Jen C K, Shang A, Saravanos C 1993 J. Opt. Soc. Am. B 10 969

    [31]

    Li M J, Chen X, Wang J, Gray S, Liu A, Demeritt J A, Ruffin A B, Crowley A M, Walton D T, Zenteno L A 2007 Opt. Express 15 8290

    [32]

    Chen W, Meng Z 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165402

    [33]

    Forghieri F, Tkach R W, Chraplyvy A R 1995 J. Lightwave Technol. 13 889

    [34]

    Chraplyvy A R, Gnauck A H, Tkach R W, Derosier R M 1993 IEEE Photon. Technol. Lett. 5 1233

    [35]

    Inoue K 1993 J. Lightwave Technol. 11 2116

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2818
  • PDF下载量:  542
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-30
  • 修回日期:  2012-02-20
  • 刊出日期:  2012-09-05

远程干涉型光纤传感系统的非线性相位噪声分析

  • 1. 国防科学技术大学光电科学与工程学院, 长沙 410073
    基金项目: 

    国家自然科学基金(批准号: 61177073)

    光电信息与传感技术广东普通高 校重点实验室开放研究基金(批准号: gdol201101)

    湖南省研究生创新基金(批准号: CX2011B033)和国防科学技术大学研究生院创 新基金(批准号: B110703)资助的课题.

摘要: 以远程干涉型光纤传感系统为背景, 研究了系统非线性相位噪声构成, 对各构成要素的具体影响进行了详细分析和综合评价, 简要讨论了噪声抑制方案. 研究表明, 系统相位噪声主要包括强度噪声转化而来的相位噪声、非线性效应引起激光 线宽展宽导致的相位噪声以及自相位调制和交叉相位调制引入的相位噪声. 受激布里渊散射和四波混频可引入强度噪声并转化为相位噪声, 对于探测带宽较窄的光纤传感系统, 四波混频引入的该部分噪声往往可以忽略. 受激布里渊散射、四波混频和调制不稳定性都可引起激光线宽展宽从而造成相位噪声的增大. 当系统信道数目较多时, 交叉相位调制对相位噪声的贡献不可忽略. 所得结论对远程干涉型光纤传感系统的实际应用具有重要的指导意义.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回