搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

色噪声参激和周期调制噪声外激联合驱动的分数阶线性振子的共振行为

屠浙 彭皓 王飞 马洪

色噪声参激和周期调制噪声外激联合驱动的分数阶线性振子的共振行为

屠浙, 彭皓, 王飞, 马洪
PDF
导出引用
  • 研究了色噪声参激和周期调制噪声外激联合驱动的分数阶线性振子及其共振行为, 利用Laplace变换和Shapiro-Loginov公式, 推导出了系统响应的一阶矩及稳态响应振幅的解析表达式. 讨论了系统阶数、摩擦系数、周期驱动力频率、色噪声强度和相关率等参数对系统稳态响应的影响, 发现系统稳态响应振幅具有非单调变化的特点, 即出现了广义随机共振现象. 并且在适当参数下, 稳态响应振幅还存在具有双峰的广义随机共振现象.
    • 基金项目: 国家自然科学基金 (批准号: 11171238) 资助的课题.
    [1]

    Benzi R, Sutera A, Vulpiana A 1981 J. Phys. A 14 L453

    [2]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [3]

    McNamara B, Wiesenfeld K, Roy R 1988 Phys. Rev. Lett. 60 2626

    [4]

    Gang H, Nicolis G, Nicolis C 1990 Phys. Rev. A 42 2030

    [5]

    Hu G 1994 Stochastic Forces and Nonlinear Systems (Shanghai: Shanghai Science and Technology Education Press) (in Chinese) [胡岗 1994 随机力与非线性系统 (上海: 上海科技教育出版社)]

    [6]

    Gitterman M 2003 Phys. Rev. E 67 057103

    [7]

    Jia Y, Yu S N, Li J R 2000 Phys. Rev. E 62 1869

    [8]

    Berdichevsky V, Gitterman M 1996 Europhys. Lett. 36 161

    [9]

    Luo X, Zhu S 2003 Phys. Rev. E 67 021104

    [10]

    Berdichevsky V, Gitterman M 1999 Phys. Rev. E 60 1494

    [11]

    Jin Y F, Hu H Y 2009 Acta Phys. Sin. 58 2895 (in Chinese) [靳艳飞, 胡海岩 2009 物理学报 58 2895]

    [12]

    Ning L J, Xu W 2009 Acta Phys. Sin. 58 2889 (in Chinese) [宁丽娟, 徐伟 2009 物理学报 58 2889]

    [13]

    Qian M, Wang Y, Zhang X J 2003 Chin. Phys. Lett. 20 810

    [14]

    Liu F, Anh V, Turner I, Zhuang P 2003 J. Appl. Math. Comput. 13 233

    [15]

    Huang F, Liu F 2005 Anziam J. 46 317

    [16]

    Bao J D 2009 Stochastic Simulation Method of Classic and Quantum Dissipative Sysmtem (Beijing: Science Press) p160 (in Chinese) [包景东 2009 经典和量子耗散系统的随机模拟方法 (北京: 科学出版社) 第84页]

    [17]

    Zhou Y Q 2006 Stochastic Process Theory (2 Edn.) (Beijing: Publishing House of Electronics Industry) p94 (in Chinese) [周荫清 2006 随机过程理论 (第2版) (北京: 电子工业出版社) 第94页]

    [18]

    Shapiro V E, Loginov V M 1978 Physica A 91 563

    [19]

    Kempfle S, Schäfer I, Beyer H 2002 Nonlinear Dynam. 29 99

    [20]

    Laas K, Mankin R, Reiter E 2011 Int. J. Math. Mod. Meth. Appl. S 5 280

    [21]

    Soika E, Mankin R, Ainsaar A 2010 Phys. Rev. E 81 011141

    [22]

    Kubo R, Toda M, Hashitsume N 1985 Statistical Physics II (Berlin: Springer)

    [23]

    Sauga A, Mankin R, Ainsaar A 2010 WSEAS Transactions on Systems 18 21

  • [1]

    Benzi R, Sutera A, Vulpiana A 1981 J. Phys. A 14 L453

    [2]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [3]

    McNamara B, Wiesenfeld K, Roy R 1988 Phys. Rev. Lett. 60 2626

    [4]

    Gang H, Nicolis G, Nicolis C 1990 Phys. Rev. A 42 2030

    [5]

    Hu G 1994 Stochastic Forces and Nonlinear Systems (Shanghai: Shanghai Science and Technology Education Press) (in Chinese) [胡岗 1994 随机力与非线性系统 (上海: 上海科技教育出版社)]

    [6]

    Gitterman M 2003 Phys. Rev. E 67 057103

    [7]

    Jia Y, Yu S N, Li J R 2000 Phys. Rev. E 62 1869

    [8]

    Berdichevsky V, Gitterman M 1996 Europhys. Lett. 36 161

    [9]

    Luo X, Zhu S 2003 Phys. Rev. E 67 021104

    [10]

    Berdichevsky V, Gitterman M 1999 Phys. Rev. E 60 1494

    [11]

    Jin Y F, Hu H Y 2009 Acta Phys. Sin. 58 2895 (in Chinese) [靳艳飞, 胡海岩 2009 物理学报 58 2895]

    [12]

    Ning L J, Xu W 2009 Acta Phys. Sin. 58 2889 (in Chinese) [宁丽娟, 徐伟 2009 物理学报 58 2889]

    [13]

    Qian M, Wang Y, Zhang X J 2003 Chin. Phys. Lett. 20 810

    [14]

    Liu F, Anh V, Turner I, Zhuang P 2003 J. Appl. Math. Comput. 13 233

    [15]

    Huang F, Liu F 2005 Anziam J. 46 317

    [16]

    Bao J D 2009 Stochastic Simulation Method of Classic and Quantum Dissipative Sysmtem (Beijing: Science Press) p160 (in Chinese) [包景东 2009 经典和量子耗散系统的随机模拟方法 (北京: 科学出版社) 第84页]

    [17]

    Zhou Y Q 2006 Stochastic Process Theory (2 Edn.) (Beijing: Publishing House of Electronics Industry) p94 (in Chinese) [周荫清 2006 随机过程理论 (第2版) (北京: 电子工业出版社) 第94页]

    [18]

    Shapiro V E, Loginov V M 1978 Physica A 91 563

    [19]

    Kempfle S, Schäfer I, Beyer H 2002 Nonlinear Dynam. 29 99

    [20]

    Laas K, Mankin R, Reiter E 2011 Int. J. Math. Mod. Meth. Appl. S 5 280

    [21]

    Soika E, Mankin R, Ainsaar A 2010 Phys. Rev. E 81 011141

    [22]

    Kubo R, Toda M, Hashitsume N 1985 Statistical Physics II (Berlin: Springer)

    [23]

    Sauga A, Mankin R, Ainsaar A 2010 WSEAS Transactions on Systems 18 21

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2484
  • PDF下载量:  598
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-06
  • 修回日期:  2012-09-13
  • 刊出日期:  2013-02-05

色噪声参激和周期调制噪声外激联合驱动的分数阶线性振子的共振行为

  • 1. 四川大学数学学院, 成都 610065;
  • 2. 电子信息控制重点实验室, 成都 610036
    基金项目: 

    国家自然科学基金 (批准号: 11171238) 资助的课题.

摘要: 研究了色噪声参激和周期调制噪声外激联合驱动的分数阶线性振子及其共振行为, 利用Laplace变换和Shapiro-Loginov公式, 推导出了系统响应的一阶矩及稳态响应振幅的解析表达式. 讨论了系统阶数、摩擦系数、周期驱动力频率、色噪声强度和相关率等参数对系统稳态响应的影响, 发现系统稳态响应振幅具有非单调变化的特点, 即出现了广义随机共振现象. 并且在适当参数下, 稳态响应振幅还存在具有双峰的广义随机共振现象.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回