-
采用格子Boltzmann方法模拟了在热对流条件下的颗粒沉降问题, 在研究单颗粒在等温流体、热流体和冷流体中运动的基础上, 进一步模拟了两个不同温度的颗粒在流体中的沉降.结果表明:两等温颗粒的沉降方式与雷诺数Re以及格拉晓夫数Gr密切相关, 而两不同温度的颗粒与两等温颗粒的沉降规律有显著不同.无论初始位置如何, 冷颗粒最终总位于热颗粒下方运动, Re较大时, 发生连续的拖曳、接触现象, 而Re较小时, 冷颗粒会以较大的沉降速度远离热颗粒.
-
关键词:
- 格子Boltzmann方法 /
- 颗粒沉降 /
- 热对流
[1] Feng J, Hu H H, Joseph D D 1994 J. Fluid Mech. 261 95
[2] Aidun C K, Ding E J 2003 Phys. Fluids 15 1612
[3] Nie D M, Lin J Z 2010 Commun. Comput. Phys. 7 544
[4] Xia Z H, Kevin W C, Saikiran R, Yue P T, James J F, Chen S Y 2009 J. Fluid Mech. 625 249
[5] Chen X, Lam Y C, Wang Z Y 2008 Compos. Sci. Technol. 68 398
[6] Gan H, Chang J Z, James J F, Howard H H 2003 J. Fluid Mech. 481 385
[7] Gan H, Feng J J, Hu H H 2003 Int. J. Multiphas. Flow 29 751
[8] Yu Z, Shao X, Wachs A 2006 J. Comput. Phys. 271 424
[9] Dan C, Wachs A 2010 Int. J. Heat Fluid Fl. 31 1050
[10] Feng Z G, Michaelides E E 2008 Phys. Fluids 20 040604
[11] Liu H T, Tong Z H, An K, Ma L Q 2009 Acta Phys. Sin. 58 6369 (in Chinese) [刘汉涛, 仝志辉, 安康, 马理强 2009 物理学报 58 6369]
[12] Liu H T, Chang J Z, An K, Su T X 2010 Acta Phys. Sin. 59 1877 (in Chinese) [刘汉涛, 常建忠, 安康, 苏铁熊 2010物理学报 59 1877]
[13] Qian Y H, D' Humieres D, Lallem P 1992 Europhys. Lett. 17 479
[14] Shi Y, Zhao T S, Guo Z L 2004 Phys. Rev. E 75 036704
[15] Zhang T, Shi B C, Guo Z L, Chai Z H, Lu J H 2012 Phys. Rev. E 85 016701
[16] Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing:Science Press) p72 (in Chinese) [郭照立, 郑楚光 2009 格子Boltzmann方法的原理及应用(北京:科学出版社) 第72页]
[17] Guo Z L, Zheng C G, Shi B C 2002 Phys. Fluids 14 2007
[18] Ladd A J C 1994 J. Fluid Mech. 271 285
[19] Ladd A J C 1994 J. Fluid Mech. 271 311
[20] Aidun C K, Lu Y N 1995 J. Fluid Mech. 81 49
[21] Zhao Y, Ji Z Z, Feng T 2004 Acta Phys. Sin. 53 671 (in Chinese) [赵颖, 季仲贞, 冯涛 2004 物理学报 53 671]
[22] Kang S K, Hassan Y A 2011 Comput. Fluids 49 36
-
[1] Feng J, Hu H H, Joseph D D 1994 J. Fluid Mech. 261 95
[2] Aidun C K, Ding E J 2003 Phys. Fluids 15 1612
[3] Nie D M, Lin J Z 2010 Commun. Comput. Phys. 7 544
[4] Xia Z H, Kevin W C, Saikiran R, Yue P T, James J F, Chen S Y 2009 J. Fluid Mech. 625 249
[5] Chen X, Lam Y C, Wang Z Y 2008 Compos. Sci. Technol. 68 398
[6] Gan H, Chang J Z, James J F, Howard H H 2003 J. Fluid Mech. 481 385
[7] Gan H, Feng J J, Hu H H 2003 Int. J. Multiphas. Flow 29 751
[8] Yu Z, Shao X, Wachs A 2006 J. Comput. Phys. 271 424
[9] Dan C, Wachs A 2010 Int. J. Heat Fluid Fl. 31 1050
[10] Feng Z G, Michaelides E E 2008 Phys. Fluids 20 040604
[11] Liu H T, Tong Z H, An K, Ma L Q 2009 Acta Phys. Sin. 58 6369 (in Chinese) [刘汉涛, 仝志辉, 安康, 马理强 2009 物理学报 58 6369]
[12] Liu H T, Chang J Z, An K, Su T X 2010 Acta Phys. Sin. 59 1877 (in Chinese) [刘汉涛, 常建忠, 安康, 苏铁熊 2010物理学报 59 1877]
[13] Qian Y H, D' Humieres D, Lallem P 1992 Europhys. Lett. 17 479
[14] Shi Y, Zhao T S, Guo Z L 2004 Phys. Rev. E 75 036704
[15] Zhang T, Shi B C, Guo Z L, Chai Z H, Lu J H 2012 Phys. Rev. E 85 016701
[16] Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing:Science Press) p72 (in Chinese) [郭照立, 郑楚光 2009 格子Boltzmann方法的原理及应用(北京:科学出版社) 第72页]
[17] Guo Z L, Zheng C G, Shi B C 2002 Phys. Fluids 14 2007
[18] Ladd A J C 1994 J. Fluid Mech. 271 285
[19] Ladd A J C 1994 J. Fluid Mech. 271 311
[20] Aidun C K, Lu Y N 1995 J. Fluid Mech. 81 49
[21] Zhao Y, Ji Z Z, Feng T 2004 Acta Phys. Sin. 53 671 (in Chinese) [赵颖, 季仲贞, 冯涛 2004 物理学报 53 671]
[22] Kang S K, Hassan Y A 2011 Comput. Fluids 49 36
引用本文: |
Citation: |
计量
- 文章访问数: 2000
- PDF下载量: 787
- 被引次数: 0