搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性疏水固壁润湿性反转现象的格子Boltzmann方法模拟

刘邱祖 寇子明 贾月梅 吴娟 韩振南 张倩倩

改性疏水固壁润湿性反转现象的格子Boltzmann方法模拟

刘邱祖, 寇子明, 贾月梅, 吴娟, 韩振南, 张倩倩
PDF
导出引用
导出核心图
  • 基于疏水固壁改性会引起润湿性反转的特点,采用考虑固体与液体间分子力的格子Boltzmann方法,从壁面的线性和瞬时改性两方面对润湿性反转现象进行了数值模拟,并结合流体体积方法处理界面层质量. 结果表明:壁面线性改性的过程中润湿性反转变化平稳,润湿所需时间大幅减少,所得到的接触角与固液吸引力系数的关系与其他文献结果一致;壁面瞬时改性幅度越大说明固壁对液滴作用力越强,表现为润湿性变化越明显,瞬时改性后接触角随时间呈指数规律变化,这与现有结论相符合. 研究发现:在改性条件下液膜铺展过程中伴随着振荡变化,线性改性的振动峰值与改性幅度相关;瞬时改性的液膜速度会在某一时刻突然增大,这种现象与夹带空气有关.
    • 基金项目: 国家自然科学基金联合基金(批准号:U1261107)资助的课题.
    [1]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [2]

    Shen Z Y, He Y 2012 Chin. Phys. Lett. 29 024703

    [3]

    Mahmood R S, Sonia B, Luc G F 2012 Appl. Surf. Sci. 258 6416

    [4]

    Tsekova R, Borissovb D, Karakasheva S I 2013 Colloids Surf. A 423 77

    [5]

    Lee K S, Starov V M 2009 J. Colloid Interf. Sci. 329 3615

    [6]

    Winkels K G, Weijs J H, Eddi A, Snoeijer J H 2012 Phys. Rev. E 85 055301

    [7]

    Beacham D R, Matar O K 2009 Langmuir 25 14174

    [8]

    Liu S S, Zhang C H, Zhang H B, Zhou J, He J G, Yin H Y 2013 Chin. Phys. B 22 106801

    [9]

    Zhu X T, Zhang Z Z, Men X H, Yang J, Xu X H, Zhu X T, Xue Q J 2011 Appl. Surf. Sci. 257 3753

    [10]

    Bi F F, Guo Y L, Shen S Q, Chen J X 2012 Acta Phys. Sin. 61 184702 (in Chinese) [毕菲菲, 郭亚丽, 沈胜强, 陈觉先 2012 物理学报 61 184702]

    [11]

    Yang J, Zhang Z Z, Men X H, Xu X H, Zhu X T 2011 Carbon 49 19

    [12]

    Gao Y F, Sun D Y 2010 Chin. Phys. Lett. 27 066802

    [13]

    Gong M G, Liu Y Y, Xu X L 2010 Chin. Phys. B 19 106801

    [14]

    Su T X, Ma L Q, Liu M B, Chang J Z 2013 Acta Phys. Sin. 62 064702 (in Chinese) [苏铁熊, 马理强, 刘谋斌, 常建忠 2013 物理学报 62 064702]

    [15]

    Wang J F, Sun F X, Cheng R J 2010 Chin. Phys. B 19 060201

    [16]

    McNamara G R, Zanetti G 1988 Phys. Rev. Lett. 61 2332

    [17]

    Dupuis A, Yeomans J M 2005 Langmuir 21 2624

    [18]

    Wang W X, Shi J, Qiu B, Li H B 2010 Acta Phys. Sin. 59 8371 (in Chinese) [王文霞, 施娟, 邱冰, 李华兵 2010 物理学报 59 8371]

    [19]

    Sun D K, Jiang D, Xiang N, Chen K, Ni Z H 2013 Chin. Phys. Lett. 30 074702

    [20]

    Kawasaki A, Onishi J, Chen Y, Ohashi H 2007 Comp. Math. Appl. 55 1492

    [21]

    Xing X Q, Butler D L, Yang C 2006 Comp. Math. Sci. 7 1

    [22]

    Kang Q, Zhang D, Chen S 2002 Phys. Fluids 14 3203

    [23]

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲玮 2010 物理学报 59 2595]

    [24]

    Zhang J F, Li B M, Kwok D Y 2004 Phys. Rev. E 69 032602

    [25]

    Ginzburg I, Steiner K 2003 J. Comput. Phys. 185 61

    [26]

    Zhang M L, Hao Z N, Zhang Y P 2013 Acta Oceanol. Sin. 32 38

    [27]

    Ding Q L, Wang D G, Wang L L 2010 Shuili Xuebao 8 991 (in Chinese) [丁全林, 汪德爟, 王玲玲 2010 水利学报 8 991]

    [28]

    Liu Q Z, Kou Z M, Han Z N, Gao G J 2013 Acta Phys. Sin. 62 234701 (in Chinese) [刘邱祖, 寇子明, 韩振南, 高贵军 2013 物理学报 62 234701]

    [29]

    Xiong J B, Seiichi K, Mikio S 2011 J. Nucl. Sci. Technol. 48 145

    [30]

    Lee K S, Ivanova N, Starov V M, Hilal N, Dutschk V 2008 Adv. Colloid Interf. Sci. 144 54

    [31]

    Li H, Zheng M J, Liu S D, Ma L, Zhu C Q, Xiong Z Z 2013 Surf. Coat. Technol. 224 88

    [32]

    Liu S S, Zhang C H, He J G, Zhou J, Yin H Y 2013 Acta Phys. Sin. 62 206201 (in Chinese) [刘思思, 张朝辉, 何建国, 周杰, 尹恒洋 2013 物理学报 62 206201]

    [33]

    Siddhartha F L, Vivek V B, Nigam K D P 2007 Chem. Eng. Sci. 62 7214

    [34]

    Hu G H, Xu A J, Xu Z, Zhou Z W 2008 Phys. Fluids 20 102101

  • [1]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [2]

    Shen Z Y, He Y 2012 Chin. Phys. Lett. 29 024703

    [3]

    Mahmood R S, Sonia B, Luc G F 2012 Appl. Surf. Sci. 258 6416

    [4]

    Tsekova R, Borissovb D, Karakasheva S I 2013 Colloids Surf. A 423 77

    [5]

    Lee K S, Starov V M 2009 J. Colloid Interf. Sci. 329 3615

    [6]

    Winkels K G, Weijs J H, Eddi A, Snoeijer J H 2012 Phys. Rev. E 85 055301

    [7]

    Beacham D R, Matar O K 2009 Langmuir 25 14174

    [8]

    Liu S S, Zhang C H, Zhang H B, Zhou J, He J G, Yin H Y 2013 Chin. Phys. B 22 106801

    [9]

    Zhu X T, Zhang Z Z, Men X H, Yang J, Xu X H, Zhu X T, Xue Q J 2011 Appl. Surf. Sci. 257 3753

    [10]

    Bi F F, Guo Y L, Shen S Q, Chen J X 2012 Acta Phys. Sin. 61 184702 (in Chinese) [毕菲菲, 郭亚丽, 沈胜强, 陈觉先 2012 物理学报 61 184702]

    [11]

    Yang J, Zhang Z Z, Men X H, Xu X H, Zhu X T 2011 Carbon 49 19

    [12]

    Gao Y F, Sun D Y 2010 Chin. Phys. Lett. 27 066802

    [13]

    Gong M G, Liu Y Y, Xu X L 2010 Chin. Phys. B 19 106801

    [14]

    Su T X, Ma L Q, Liu M B, Chang J Z 2013 Acta Phys. Sin. 62 064702 (in Chinese) [苏铁熊, 马理强, 刘谋斌, 常建忠 2013 物理学报 62 064702]

    [15]

    Wang J F, Sun F X, Cheng R J 2010 Chin. Phys. B 19 060201

    [16]

    McNamara G R, Zanetti G 1988 Phys. Rev. Lett. 61 2332

    [17]

    Dupuis A, Yeomans J M 2005 Langmuir 21 2624

    [18]

    Wang W X, Shi J, Qiu B, Li H B 2010 Acta Phys. Sin. 59 8371 (in Chinese) [王文霞, 施娟, 邱冰, 李华兵 2010 物理学报 59 8371]

    [19]

    Sun D K, Jiang D, Xiang N, Chen K, Ni Z H 2013 Chin. Phys. Lett. 30 074702

    [20]

    Kawasaki A, Onishi J, Chen Y, Ohashi H 2007 Comp. Math. Appl. 55 1492

    [21]

    Xing X Q, Butler D L, Yang C 2006 Comp. Math. Sci. 7 1

    [22]

    Kang Q, Zhang D, Chen S 2002 Phys. Fluids 14 3203

    [23]

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲玮 2010 物理学报 59 2595]

    [24]

    Zhang J F, Li B M, Kwok D Y 2004 Phys. Rev. E 69 032602

    [25]

    Ginzburg I, Steiner K 2003 J. Comput. Phys. 185 61

    [26]

    Zhang M L, Hao Z N, Zhang Y P 2013 Acta Oceanol. Sin. 32 38

    [27]

    Ding Q L, Wang D G, Wang L L 2010 Shuili Xuebao 8 991 (in Chinese) [丁全林, 汪德爟, 王玲玲 2010 水利学报 8 991]

    [28]

    Liu Q Z, Kou Z M, Han Z N, Gao G J 2013 Acta Phys. Sin. 62 234701 (in Chinese) [刘邱祖, 寇子明, 韩振南, 高贵军 2013 物理学报 62 234701]

    [29]

    Xiong J B, Seiichi K, Mikio S 2011 J. Nucl. Sci. Technol. 48 145

    [30]

    Lee K S, Ivanova N, Starov V M, Hilal N, Dutschk V 2008 Adv. Colloid Interf. Sci. 144 54

    [31]

    Li H, Zheng M J, Liu S D, Ma L, Zhu C Q, Xiong Z Z 2013 Surf. Coat. Technol. 224 88

    [32]

    Liu S S, Zhang C H, He J G, Zhou J, Yin H Y 2013 Acta Phys. Sin. 62 206201 (in Chinese) [刘思思, 张朝辉, 何建国, 周杰, 尹恒洋 2013 物理学报 62 206201]

    [33]

    Siddhartha F L, Vivek V B, Nigam K D P 2007 Chem. Eng. Sci. 62 7214

    [34]

    Hu G H, Xu A J, Xu Z, Zhou Z W 2008 Phys. Fluids 20 102101

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1900
  • PDF下载量:  668
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-02
  • 修回日期:  2014-01-25
  • 刊出日期:  2014-05-05

改性疏水固壁润湿性反转现象的格子Boltzmann方法模拟

  • 1. 太原理工大学机械工程学院, 太原 030024;
  • 2. 山西省矿山流体控制工程实验室, 太原 030024;
  • 3. 太原理工大学力学学院, 太原 030024
    基金项目: 

    国家自然科学基金联合基金(批准号:U1261107)资助的课题.

摘要: 基于疏水固壁改性会引起润湿性反转的特点,采用考虑固体与液体间分子力的格子Boltzmann方法,从壁面的线性和瞬时改性两方面对润湿性反转现象进行了数值模拟,并结合流体体积方法处理界面层质量. 结果表明:壁面线性改性的过程中润湿性反转变化平稳,润湿所需时间大幅减少,所得到的接触角与固液吸引力系数的关系与其他文献结果一致;壁面瞬时改性幅度越大说明固壁对液滴作用力越强,表现为润湿性变化越明显,瞬时改性后接触角随时间呈指数规律变化,这与现有结论相符合. 研究发现:在改性条件下液膜铺展过程中伴随着振荡变化,线性改性的振动峰值与改性幅度相关;瞬时改性的液膜速度会在某一时刻突然增大,这种现象与夹带空气有关.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回