搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高气压均匀直流辉光放电等离子体的光学特性

王建龙 丁芳 朱晓东

高气压均匀直流辉光放电等离子体的光学特性

王建龙, 丁芳, 朱晓东
PDF
导出引用
  • 在高气压(大于100 Torr, 1 Torr=1.33322×102 Pa)平板位形的均匀直流辉光放电中, 一定条件下观察到平行排列的明暗相间的等离子体辉纹. 结合等离子体的光发射谱诊断, 研究了气体组分对等离子体光学特性的影响. 研究发现, 随着甲烷浓度的增加, 辉纹间距减小, 相应的电子激发温度降低. 当甲烷浓度增加时, 等离子体中低电离能的粒种增加, 粒子平均电离能减小, 这种情况下, 电子被电场加速较短的距离所获得的能量就可以激发粒子, 产生可见的光发射, 表现为辉纹间距缩短. 随着氩气的引入, 能够观察到明显的辉纹, 且增大氩气含量, 辉纹间距增加, 这与氩的较高电离能有关, 而相应的电子激发温度增加. 研究结果表明, 随着工作气体的改变, 等离子体辉纹间距呈现出一种对电子温度的响应.
    • 基金项目: 国家自然科学基金(批准号: 11075158, 11375192)资助的课题.
    [1]

    Lee J K, Eun K Y, Baik Y J, Cheon H J, Rhyu J W, Shin T J, Park J W 2002 Diamond Relat. Mater. 11 463

    [2]

    Ding F, Zhu X D, Zhan R J, Ni T L, Ke B, Zhou H Y, Chen M D, Wen X H 2009 Appl. Phys. Lett. 95 121501

    [3]

    Kunhardt E E 2000 IEEE Trans. Plasma Sci. 28 189

    [4]

    Lee D A, Garscadden A 1972 Phys. Fluids 15 1826

    [5]

    Laz F, Yang S S, Kim H C, Lee J K 2005 J. Appl. Phys. 98 043302

    [6]

    He S J, Ha J, Guo S Q, Liu Z Q, Dong L F 2014 Spectrosc. Spect. Anal. 34 39 (in Chinese) [何寿杰, 哈静, 郭树青, 刘志强, 董丽芳 2014 光谱学与光谱分析 34 39]

    [7]

    Zhao X F, He F, Ouyang J T 2012 Phys. Lett. A 376 2057

    [8]

    Robert R A, Vladimir I K 2005 IEEE Trans. Plasma Sci. 33 354

    [9]

    Rajneesh K, Sanjay V K, Dhiraj B 2007 Phys. Plasmas 14 122101

    [10]

    Vladimir I K 2006 J. Phys. D: Appl. Phys. 39 487

    [11]

    David S, Bakhtier F, Alexander G 2008 Plasma Sources Sci. Technol. 17 025013

    [12]

    Yuri B G, Vladimir I K, Vladimir O 2013 Phys. Plasmas 20 101602

    [13]

    Zheng S J, Ding F, Xie X H, Tang Z L, Zhang Y C, Li H, Yang K, Zhu X D 2013 Acta Phys. Sin. 16 165204 (in Chinese) [郑仕健, 丁芳, 谢新华, 汤中亮, 张一川, 李唤, 杨宽, 朱晓东 2013 物理学报 16 165204]

    [14]

    Liberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp535-543 (in Chinese) [力伯曼 M A, 里登博格 A J 著(蒲以康 译) 2007 等离子体放电原理与材料处理(北京: 科学出版社)第535–543页]

    [15]

    Sukhinin G I, Fedoseev A V 2006 High Temp. 44 157

  • [1]

    Lee J K, Eun K Y, Baik Y J, Cheon H J, Rhyu J W, Shin T J, Park J W 2002 Diamond Relat. Mater. 11 463

    [2]

    Ding F, Zhu X D, Zhan R J, Ni T L, Ke B, Zhou H Y, Chen M D, Wen X H 2009 Appl. Phys. Lett. 95 121501

    [3]

    Kunhardt E E 2000 IEEE Trans. Plasma Sci. 28 189

    [4]

    Lee D A, Garscadden A 1972 Phys. Fluids 15 1826

    [5]

    Laz F, Yang S S, Kim H C, Lee J K 2005 J. Appl. Phys. 98 043302

    [6]

    He S J, Ha J, Guo S Q, Liu Z Q, Dong L F 2014 Spectrosc. Spect. Anal. 34 39 (in Chinese) [何寿杰, 哈静, 郭树青, 刘志强, 董丽芳 2014 光谱学与光谱分析 34 39]

    [7]

    Zhao X F, He F, Ouyang J T 2012 Phys. Lett. A 376 2057

    [8]

    Robert R A, Vladimir I K 2005 IEEE Trans. Plasma Sci. 33 354

    [9]

    Rajneesh K, Sanjay V K, Dhiraj B 2007 Phys. Plasmas 14 122101

    [10]

    Vladimir I K 2006 J. Phys. D: Appl. Phys. 39 487

    [11]

    David S, Bakhtier F, Alexander G 2008 Plasma Sources Sci. Technol. 17 025013

    [12]

    Yuri B G, Vladimir I K, Vladimir O 2013 Phys. Plasmas 20 101602

    [13]

    Zheng S J, Ding F, Xie X H, Tang Z L, Zhang Y C, Li H, Yang K, Zhu X D 2013 Acta Phys. Sin. 16 165204 (in Chinese) [郑仕健, 丁芳, 谢新华, 汤中亮, 张一川, 李唤, 杨宽, 朱晓东 2013 物理学报 16 165204]

    [14]

    Liberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp535-543 (in Chinese) [力伯曼 M A, 里登博格 A J 著(蒲以康 译) 2007 等离子体放电原理与材料处理(北京: 科学出版社)第535–543页]

    [15]

    Sukhinin G I, Fedoseev A V 2006 High Temp. 44 157

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2180
  • PDF下载量:  437
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-24
  • 修回日期:  2014-08-28
  • 刊出日期:  2015-02-05

高气压均匀直流辉光放电等离子体的光学特性

  • 1. 中国科学技术大学近代物理系, 合肥 230026;
  • 2. 中国科学院等离子体物理研究所, 合肥 230031
    基金项目: 

    国家自然科学基金(批准号: 11075158, 11375192)资助的课题.

摘要: 在高气压(大于100 Torr, 1 Torr=1.33322×102 Pa)平板位形的均匀直流辉光放电中, 一定条件下观察到平行排列的明暗相间的等离子体辉纹. 结合等离子体的光发射谱诊断, 研究了气体组分对等离子体光学特性的影响. 研究发现, 随着甲烷浓度的增加, 辉纹间距减小, 相应的电子激发温度降低. 当甲烷浓度增加时, 等离子体中低电离能的粒种增加, 粒子平均电离能减小, 这种情况下, 电子被电场加速较短的距离所获得的能量就可以激发粒子, 产生可见的光发射, 表现为辉纹间距缩短. 随着氩气的引入, 能够观察到明显的辉纹, 且增大氩气含量, 辉纹间距增加, 这与氩的较高电离能有关, 而相应的电子激发温度增加. 研究结果表明, 随着工作气体的改变, 等离子体辉纹间距呈现出一种对电子温度的响应.

English Abstract

参考文献 (15)

目录

    /

    返回文章
    返回