搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

少模光纤的弯曲损耗研究

郑兴娟 任国斌 黄琳 郑鹤玲

少模光纤的弯曲损耗研究

郑兴娟, 任国斌, 黄琳, 郑鹤玲
PDF
导出引用
导出核心图
  • 随着光纤通信容量的不断增加, 基于少模光纤的模分复用技术由于其多信道复用、 高频谱效率及低非线性效应成为目前提高光纤通信容量的研究热点. 本文推导得到了适用于少模光纤中高阶模式弯曲损耗的计算公式, 系统研究了下陷层辅助弯曲不敏感抛物线型少模光纤的主要参数(包括芯层半径、芯层到下陷层距离、下陷层宽度及下陷层折射率差)对其弯曲损耗特性的影响. 研究表明: 对于少模光纤, 模式阶数越高, 光纤的弯曲敏感性越高; 随纤芯与下陷层间距离的变化, 光纤各阶模式的弯曲损耗均存在一个最小值. 本文结论对弯曲不敏感少模光纤的设计、制造及少模光纤弯曲性能优化具有指导意义.
      通信作者: 任国斌, gbren@bjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61178008)和中央高校基本科研业务费专项基金(批准号: 2011RC050)资助的课题.
    [1]

    Desurvire E B 2006 J. Lightwave Technol. 24 4697

    [2]

    Morioka T 2009 Proceedings of the 14th Opto-Electronics and Communications Conference Hong Kong, China, July 13-17, 2009 p1

    [3]

    Yan L S, Liu X, Shieh W 2011 IEEE Photon. J. 3 325

    [4]

    Essiambre R J, Kramer G, Winzer P, Foschini G J, Goebel B 2010 J. Lightwave Technol. 28 662

    [5]

    Xie Y W, Fu S N, Zhang H L, Tang M, Shen P, Liu D M 2013 Acta Opt. Sin. 9 09060101 (in Chinese) [谢意维, 付松年, 张海亮, 唐明, 沈平, 刘德明 2013 光学学报 9 09060101]

    [6]

    Yao S C, Fu S N, Zhang M M, Tang M, Shen P, Liu D M 2013 Acta Phys. Sin. 62 144215 (in Chinese) [姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明 2013 物理学报 62 144215]

    [7]

    Marcuse D 1976 J. Opt. Soc. Am. 66 311

    [8]

    Watekar P R, Ju S, Yoon Y S, Lee Y S, Han W T 2008 Opt. Express 16 13545

    [9]

    Watekar P R, Ju S, Htein L, Han W T 2010 Opt. Express 18 13761

    [10]

    Goto Y, Nakajima K, Kurashima T 2012 Proceeding of the 17th Opto-electronics and Communications Conference (OECC) BuSan, July 2-6, 2012 p813

    [11]

    Lin Z 2014 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese) [林桢2007博士学位论文 (北京:北京交通大学)]

    [12]

    Li H S, Ren G B, Gao Y X, Lian Y D, Cao M, Jian S S 2015 IEEE Photon. Technol. Lett. 27 1293

    [13]

    Jiang S S, Liu Y, Xing E J 2015 Acta Phys. Sin. 64 064212 (in Chinese) [姜姗姗, 刘艳, 邢尔军 2015 物理学报 64 064212]

    [14]

    Schulze C, Lorenz A, Flamm D, Hartung A, Schrter S, Bartelt H, Duparr M 2013 Opt. Express 21 3170

    [15]

    Lars G N, Sun Y, Nicholson J W, Jakobsen D, Jespersen K G, Lingle R, Palsdottir B 2012 J. Lightwave Technol. 30 3693

    [16]

    Denis D 2009 Opt. Express 17 22081

    [17]

    Lin Z, Zheng S W, Ren G B, Jian S S 2013 Acta Phys. Sin. 62 064214 (in Chinese) [林桢, 郑斯文, 任国斌, 简水生 2013 物理学报 62 064214]

    [18]

    Faustini L, Martini G 1997 J. Lightwave Technol. 15 671

    [19]

    Wang Q, Farrell G, Feir T 2005 Opt. Express 13 4476

    [20]

    Vassallo C 1985 Opt. Quantum. Electron 17 201

    [21]

    Vassallo C 1985 J. Lightwave Technol. LT-3 416

    [22]

    Li H S, Ren G B, Yin B, Lian Y D, Bai Y L, Jian W, Jian S S 2015 Opt. Common. 352 84

    [23]

    Hagen R 1992 J. Lightwave Technol. 10 543

    [24]

    Ren G B, Lin Z, Zheng SW, Jian S S 2013 Opt. Lett. 38 781

    [25]

    Zhang Z Y, Ren G B, Zhou D A, Wu J L 2014 Laser Opt. Electron. Prog. 51 78 (in Chinese) [张子阳, 任国斌, 周定安, 吴家梁 2014 激光与光电子学进展 51 78]

    [26]

    Schermer R T, Cole J H 2007 IEEE J. Quantum. Electron 43 899

  • [1]

    Desurvire E B 2006 J. Lightwave Technol. 24 4697

    [2]

    Morioka T 2009 Proceedings of the 14th Opto-Electronics and Communications Conference Hong Kong, China, July 13-17, 2009 p1

    [3]

    Yan L S, Liu X, Shieh W 2011 IEEE Photon. J. 3 325

    [4]

    Essiambre R J, Kramer G, Winzer P, Foschini G J, Goebel B 2010 J. Lightwave Technol. 28 662

    [5]

    Xie Y W, Fu S N, Zhang H L, Tang M, Shen P, Liu D M 2013 Acta Opt. Sin. 9 09060101 (in Chinese) [谢意维, 付松年, 张海亮, 唐明, 沈平, 刘德明 2013 光学学报 9 09060101]

    [6]

    Yao S C, Fu S N, Zhang M M, Tang M, Shen P, Liu D M 2013 Acta Phys. Sin. 62 144215 (in Chinese) [姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明 2013 物理学报 62 144215]

    [7]

    Marcuse D 1976 J. Opt. Soc. Am. 66 311

    [8]

    Watekar P R, Ju S, Yoon Y S, Lee Y S, Han W T 2008 Opt. Express 16 13545

    [9]

    Watekar P R, Ju S, Htein L, Han W T 2010 Opt. Express 18 13761

    [10]

    Goto Y, Nakajima K, Kurashima T 2012 Proceeding of the 17th Opto-electronics and Communications Conference (OECC) BuSan, July 2-6, 2012 p813

    [11]

    Lin Z 2014 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese) [林桢2007博士学位论文 (北京:北京交通大学)]

    [12]

    Li H S, Ren G B, Gao Y X, Lian Y D, Cao M, Jian S S 2015 IEEE Photon. Technol. Lett. 27 1293

    [13]

    Jiang S S, Liu Y, Xing E J 2015 Acta Phys. Sin. 64 064212 (in Chinese) [姜姗姗, 刘艳, 邢尔军 2015 物理学报 64 064212]

    [14]

    Schulze C, Lorenz A, Flamm D, Hartung A, Schrter S, Bartelt H, Duparr M 2013 Opt. Express 21 3170

    [15]

    Lars G N, Sun Y, Nicholson J W, Jakobsen D, Jespersen K G, Lingle R, Palsdottir B 2012 J. Lightwave Technol. 30 3693

    [16]

    Denis D 2009 Opt. Express 17 22081

    [17]

    Lin Z, Zheng S W, Ren G B, Jian S S 2013 Acta Phys. Sin. 62 064214 (in Chinese) [林桢, 郑斯文, 任国斌, 简水生 2013 物理学报 62 064214]

    [18]

    Faustini L, Martini G 1997 J. Lightwave Technol. 15 671

    [19]

    Wang Q, Farrell G, Feir T 2005 Opt. Express 13 4476

    [20]

    Vassallo C 1985 Opt. Quantum. Electron 17 201

    [21]

    Vassallo C 1985 J. Lightwave Technol. LT-3 416

    [22]

    Li H S, Ren G B, Yin B, Lian Y D, Bai Y L, Jian W, Jian S S 2015 Opt. Common. 352 84

    [23]

    Hagen R 1992 J. Lightwave Technol. 10 543

    [24]

    Ren G B, Lin Z, Zheng SW, Jian S S 2013 Opt. Lett. 38 781

    [25]

    Zhang Z Y, Ren G B, Zhou D A, Wu J L 2014 Laser Opt. Electron. Prog. 51 78 (in Chinese) [张子阳, 任国斌, 周定安, 吴家梁 2014 激光与光电子学进展 51 78]

    [26]

    Schermer R T, Cole J H 2007 IEEE J. Quantum. Electron 43 899

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2171
  • PDF下载量:  299
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-10
  • 修回日期:  2015-12-01
  • 刊出日期:  2016-03-05

少模光纤的弯曲损耗研究

  • 1. 北京交通大学光波技术研究所, 北京 100044;
  • 2. 北京交通大学, 全光网络与现代通信网教育部重点实验室, 北京 100044;
  • 3. 国家电网山东省电力公司临沂供电公司, 临沂 276000
  • 通信作者: 任国斌, gbren@bjtu.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 61178008)和中央高校基本科研业务费专项基金(批准号: 2011RC050)资助的课题.

摘要: 随着光纤通信容量的不断增加, 基于少模光纤的模分复用技术由于其多信道复用、 高频谱效率及低非线性效应成为目前提高光纤通信容量的研究热点. 本文推导得到了适用于少模光纤中高阶模式弯曲损耗的计算公式, 系统研究了下陷层辅助弯曲不敏感抛物线型少模光纤的主要参数(包括芯层半径、芯层到下陷层距离、下陷层宽度及下陷层折射率差)对其弯曲损耗特性的影响. 研究表明: 对于少模光纤, 模式阶数越高, 光纤的弯曲敏感性越高; 随纤芯与下陷层间距离的变化, 光纤各阶模式的弯曲损耗均存在一个最小值. 本文结论对弯曲不敏感少模光纤的设计、制造及少模光纤弯曲性能优化具有指导意义.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回