搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ICP微等离子体射流在快速成形制造中的应用

张一川 杨宽 李唤 朱晓东

引用本文:
Citation:

ICP微等离子体射流在快速成形制造中的应用

张一川, 杨宽, 李唤, 朱晓东
cstr: 32037.14.aps.65.145201

Application of inductively coupled microplasma jet on rapid manufacturing

Zhang Yi-Chuan, Yang Kuan, Li Huan, Zhu Xiao-Dong
cstr: 32037.14.aps.65.145201
PDF
导出引用
  • 本文开展了大气压甚高频感应耦合(ICP)微等离子体射流的特性与应用研究. 在150 MHz 甚高频, 功率为90 W条件下获得温度高达上千度的温热等离子体射流, 射流长度近3 cm. 随着气流量的增加射流将呈现层流到湍流的转变, 长度先增后减; 而功率对于射流长度的影响存在着一个上限, 当等离子体吸收的能量与扩散损失的能量达到平衡时, 射流长度将达到最大. 利用这种ICP微等离子体射流进行了微尺寸金属铜的快速成形制造, 得到了球冠状和柱状铜金属件. 在扫描电子显微镜下观察到沉积物表面最小颗粒尺寸远小于铜粉颗粒; X射线衍射结果显示沉积物表面存在弱氧化物峰, 这是沉积过程中空气被射流卷入所致.
    Metal rapid manufacture has received great attention in recent decades. Energy source with high power density is requisite for the metal deposition. Atmospheric pressure inductively coupled microplasma jet is commonly characterized by high temperatures, which is one of excellent candidates for metal rapid manufacture on a micro scale.In this paper, we investigate the microplasma jet driven by a 150 MHz very-high-frequency power supply at atmospheric pressure. A microplasma of 3 cm in length and about 3 mm in diameter can be produced at 90 W power applied, with gas temperatures above one thousand degree centigrade. The jet length rises first, and then decreases by increasing gas flow rate, showing a transition from laminar flow to turbulence. The jet length also increases by enhancing applied power, but then keeps a maximum value with further increasing power, which is attributed to the attainment of equilibrium between the energy absorption and losses in the transport process in plasma.Copper powders are carried by the argon flowing into plasma, and melted fast by the microjet. An alumina ceramic plate is used as a substrate, which is set on the substrate holder with a precisely controlled X-Y-Z manipulator. A copper spherical cap with 2 mm in diameter and a column with 1 cm in height are fabricated in a few seconds, respectively, on the alumina ceramic substrate. The Cu spherical cap is characterized by scanning electron microscopy. Particles obtained on the sample surface are far smaller than the source powders, indicating a melting process of copper powders in plasma, as well as high gas temperature exceeding the melting point of copper. The weak peak of Cu2+1O is present besides strong copper diffraction lines in X-ray diffraction pattern, suggesting that the weak oxidation happens during rapid fabrication.
      通信作者: 朱晓东, xdzhu@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11375192)资助的课题.
      Corresponding author: Zhu Xiao-Dong, xdzhu@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11375192).
    [1]

    Levy G N, Schindel R, Kruth J P 2003 CIRP Ann. Manuf. Tech. 52 589

    [2]

    Biamino S, Penna A, Ackelid U, Sabbadini S, Tassa O, Fino P, Pavese M, Gennaro P, Badini C 2011 Intermetallics 19 776

    [3]

    Martina F, Mehnen J, Williams S W, Colegrove P, Wang F 2012 J. Mater. Process. Technol. 212 1377

    [4]

    Kikuchi T, Hasegawa Y, Shirai H 2004 J. Phys. D: Appl. Phys. 37 1537

    [5]

    Benedikt J, Focke K, Yanguas-Gil A, von Keudell A 2006 Appl. Phys. Lett. 89 251504

    [6]

    Shashurin A, Keidar M, Bronnikov S, Jurjus R A, Stepp M A 2008 Appl. Phys. Lett. 93 181501

    [7]

    Ni T L, Ding F, Zhu X D, Wen X H, Zhou H Y 2008 Appl. Phys. Lett. 92 241503

    [8]

    Mariotti D, Sankaran R M 2010 J. Phys. D: Appl. Phys. 43 323001

    [9]

    Iza F, Lee J K, Kong M G 2007 Phys. Rev. Lett. 99 075004

    [10]

    Nam S K, Economou D J 2004 J. Appl. Phys. 95 2272

    [11]

    Mericam-Bourdet N, Laroussi M, Begum A, Karakas E 2009 J. Phys. D: Appl. Phys. 42 055207

    [12]

    Xiong Q, Lu X, Ostrikov K, Xiong Z, Xian Y, Zhou F, Zou C, Hu J, Gong W, Jiang Z 2009 Phys. Plasmas 16 043505

  • [1]

    Levy G N, Schindel R, Kruth J P 2003 CIRP Ann. Manuf. Tech. 52 589

    [2]

    Biamino S, Penna A, Ackelid U, Sabbadini S, Tassa O, Fino P, Pavese M, Gennaro P, Badini C 2011 Intermetallics 19 776

    [3]

    Martina F, Mehnen J, Williams S W, Colegrove P, Wang F 2012 J. Mater. Process. Technol. 212 1377

    [4]

    Kikuchi T, Hasegawa Y, Shirai H 2004 J. Phys. D: Appl. Phys. 37 1537

    [5]

    Benedikt J, Focke K, Yanguas-Gil A, von Keudell A 2006 Appl. Phys. Lett. 89 251504

    [6]

    Shashurin A, Keidar M, Bronnikov S, Jurjus R A, Stepp M A 2008 Appl. Phys. Lett. 93 181501

    [7]

    Ni T L, Ding F, Zhu X D, Wen X H, Zhou H Y 2008 Appl. Phys. Lett. 92 241503

    [8]

    Mariotti D, Sankaran R M 2010 J. Phys. D: Appl. Phys. 43 323001

    [9]

    Iza F, Lee J K, Kong M G 2007 Phys. Rev. Lett. 99 075004

    [10]

    Nam S K, Economou D J 2004 J. Appl. Phys. 95 2272

    [11]

    Mericam-Bourdet N, Laroussi M, Begum A, Karakas E 2009 J. Phys. D: Appl. Phys. 42 055207

    [12]

    Xiong Q, Lu X, Ostrikov K, Xiong Z, Xian Y, Zhou F, Zou C, Hu J, Gong W, Jiang Z 2009 Phys. Plasmas 16 043505

计量
  • 文章访问数:  8023
  • PDF下载量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-20
  • 修回日期:  2016-05-03
  • 刊出日期:  2016-07-05

/

返回文章
返回