搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性拟合方法用于透射式脉冲红外技术测试碳/碳复合材料的热扩散系数

李晓丽 Sun Jian-Gang 陶宁 曾智 赵跃进 沈京玲 张存林

非线性拟合方法用于透射式脉冲红外技术测试碳/碳复合材料的热扩散系数

李晓丽, Sun Jian-Gang, 陶宁, 曾智, 赵跃进, 沈京玲, 张存林
PDF
导出引用
导出核心图
  • 为了测试碳/碳复合材料的热扩散系数,本文提出了非线性拟合用于透射式脉冲红外检测的数据处理方法.非线性拟合通过循环迭代的方法持续调整拟合参数,让理论值不断逼近实验值,直至获得最佳结果.传统的透射式脉冲红外成像技术利用半高时间法测试材料的热扩散系数,但通常会受到采集时间不足和信噪比差的限制.本文提出的非线性拟合方法可以有效消除或减弱这两种影响.在使用该方法之前,首先选用常见的304不锈钢评估了该方法的测量精度及拟合长度对测试结果的影响.结果显示304不锈钢的测量精度达到0.3%,且当拟合长度不小于半高时间法采集时间的1/5时,拟合长度对非线性拟合结果影响很小.随后使用该拟合方法测试了不同厚度的碳/碳复合材料试件,并通过热扩散系数测量结果分析了试件之间的热参数差异性和材料自身的均匀性.
      通信作者: 赵跃进, yjzhao@bit.edu.cn
    • 基金项目: 北京市教育部市属高校创新能力建设项目(批准号:TJSHG201510028008)和国家自然科学基金(批准号:U1233120)资助的课题.
    [1]

    Windhorst T, Blount G 1997 Mater. Design 18 11

    [2]

    Li H J, Luo R Y, Yang Z 1997 J. Mater. Eng. 8 8(in Chinese)[李贺军, 罗瑞盈, 杨峥1997材料工程 8 8]

    [3]

    ASTM E1225-042004 Standard Test Method for Thermal Conductivity of Solids by Means of the Guarded-Comparative-Longitudinal Heat Flow Technique (West Conshohocken:ASTM International) pp1-8

    [4]

    Tan J C, Tsipas S A, Golosnoy I O, Curran J A, Paul S, Clyne T W 2006 Surf. Coat. Technol. 201 1414

    [5]

    Lipaev A A 2012 Meas. Tech. 54 1264

    [6]

    Nagao Y, Yamada T, Yoshida A, Kagata K 2015 Int. J. Thermophys. 36 709

    [7]

    Batty W J, Ocallaghan P W, Probert S D 1984 Appl. Energy 16 83

    [8]

    Parker W J, Jenkins R J, Butler C P, Abbott G L 1961 J. Appl. Phys. 32 1679

    [9]

    ASTM E1461-072007 Standard Test Method for Thermal Diffusivity by the Flash Method (West Conshohocken:ASTM International) pp1-11

    [10]

    Min S, Blumm J, Lindemann A 2007 Thermochim. Acta 455 46

    [11]

    Tao N, Zeng Z, Feng L C, Zhang C L 2012 Acta Phys. Sin. 61 174212(in Chinese)[陶宁, 曾智, 冯立春, 张存林2012物理学报 61 174212]

    [12]

    Sun J G, Tao N 2016 AIP Conf. Proc. 1706 100004

    [13]

    Zeng Z, Tao N, Feng L C, Zhang C L 2013 Acta Phys. Sin. 62 138701(in Chinese)[曾智, 陶宁, 冯立春, 张存林2013物理学报 62 138701]

    [14]

    Chen D P, Zeng Z, Zhang C L, Jin X Y, Zhang Z 2012 Acta Phys. Sin. 61 094207(in Chinese)[陈大鹏, 曾智, 张存林, 金学元, 张峥2012物理学报 61 094207]

    [15]

    Chen D P, Xing C F, Zhang Z, Zhang C L 2012 Acta Phys. Sin. 61 024202(in Chinese)[陈大鹏, 邢春飞, 张峥, 张存林2012物理学报 61 024202]

    [16]

    Sun J G 2007 Int. J. Appl. Ceram. Technol. 4 75

    [17]

    Xie Z, Li J P, Chen Z 2010 Nonlinear Optimization Theory and Methods (Beijing:Higher Education Press) pp168-186(in Chinese)[谢政, 李建平, 陈挚2010非线性最优化理论与方法(北京:高等教育出版社)第168–186页]

    [18]

    Kelley C T 1999 Iterative Methods for Optimization (Philadelphia:Society for Industrial and Applied Mathematics) pp13-35

    [19]

    Song X L, An J R 2008 Xinbian Zhongwai Jinshu Cailiao Shouce (Beijing:Chemical Industry Press) p1029(in Chinese)[宋小龙, 安继儒2008新编中外金属材料手册(北京:化学工业出版社)第1029页]

    [20]

    Kothandaraman C P, Subramanyan S 2013 Heat and Mass Transfer Data Book (London:New Academic Science) contd. 6

    [21]

    Sun J G 2006 J. Heat Trans. 128 329

    [22]

    Yi F J, Liang J, Meng S H, Du S Y 2012 J. Aeronaut. Mater. 22 16(in Chinese)[易法军, 梁军, 孟松鹤, 杜善义2012航空材料学报 22 16]

    [23]

    Mao S S, Cheng Y M, Pu X L 2011 Probability Theory and Mathematical Statistics (Beijing:Higher Education Press) p305(in Chinese)[茆诗松, 程依明, 濮晓龙2011概率论与数理统计教程(第2版)(北京:高等教育出版社)第305页]

  • [1]

    Windhorst T, Blount G 1997 Mater. Design 18 11

    [2]

    Li H J, Luo R Y, Yang Z 1997 J. Mater. Eng. 8 8(in Chinese)[李贺军, 罗瑞盈, 杨峥1997材料工程 8 8]

    [3]

    ASTM E1225-042004 Standard Test Method for Thermal Conductivity of Solids by Means of the Guarded-Comparative-Longitudinal Heat Flow Technique (West Conshohocken:ASTM International) pp1-8

    [4]

    Tan J C, Tsipas S A, Golosnoy I O, Curran J A, Paul S, Clyne T W 2006 Surf. Coat. Technol. 201 1414

    [5]

    Lipaev A A 2012 Meas. Tech. 54 1264

    [6]

    Nagao Y, Yamada T, Yoshida A, Kagata K 2015 Int. J. Thermophys. 36 709

    [7]

    Batty W J, Ocallaghan P W, Probert S D 1984 Appl. Energy 16 83

    [8]

    Parker W J, Jenkins R J, Butler C P, Abbott G L 1961 J. Appl. Phys. 32 1679

    [9]

    ASTM E1461-072007 Standard Test Method for Thermal Diffusivity by the Flash Method (West Conshohocken:ASTM International) pp1-11

    [10]

    Min S, Blumm J, Lindemann A 2007 Thermochim. Acta 455 46

    [11]

    Tao N, Zeng Z, Feng L C, Zhang C L 2012 Acta Phys. Sin. 61 174212(in Chinese)[陶宁, 曾智, 冯立春, 张存林2012物理学报 61 174212]

    [12]

    Sun J G, Tao N 2016 AIP Conf. Proc. 1706 100004

    [13]

    Zeng Z, Tao N, Feng L C, Zhang C L 2013 Acta Phys. Sin. 62 138701(in Chinese)[曾智, 陶宁, 冯立春, 张存林2013物理学报 62 138701]

    [14]

    Chen D P, Zeng Z, Zhang C L, Jin X Y, Zhang Z 2012 Acta Phys. Sin. 61 094207(in Chinese)[陈大鹏, 曾智, 张存林, 金学元, 张峥2012物理学报 61 094207]

    [15]

    Chen D P, Xing C F, Zhang Z, Zhang C L 2012 Acta Phys. Sin. 61 024202(in Chinese)[陈大鹏, 邢春飞, 张峥, 张存林2012物理学报 61 024202]

    [16]

    Sun J G 2007 Int. J. Appl. Ceram. Technol. 4 75

    [17]

    Xie Z, Li J P, Chen Z 2010 Nonlinear Optimization Theory and Methods (Beijing:Higher Education Press) pp168-186(in Chinese)[谢政, 李建平, 陈挚2010非线性最优化理论与方法(北京:高等教育出版社)第168–186页]

    [18]

    Kelley C T 1999 Iterative Methods for Optimization (Philadelphia:Society for Industrial and Applied Mathematics) pp13-35

    [19]

    Song X L, An J R 2008 Xinbian Zhongwai Jinshu Cailiao Shouce (Beijing:Chemical Industry Press) p1029(in Chinese)[宋小龙, 安继儒2008新编中外金属材料手册(北京:化学工业出版社)第1029页]

    [20]

    Kothandaraman C P, Subramanyan S 2013 Heat and Mass Transfer Data Book (London:New Academic Science) contd. 6

    [21]

    Sun J G 2006 J. Heat Trans. 128 329

    [22]

    Yi F J, Liang J, Meng S H, Du S Y 2012 J. Aeronaut. Mater. 22 16(in Chinese)[易法军, 梁军, 孟松鹤, 杜善义2012航空材料学报 22 16]

    [23]

    Mao S S, Cheng Y M, Pu X L 2011 Probability Theory and Mathematical Statistics (Beijing:Higher Education Press) p305(in Chinese)[茆诗松, 程依明, 濮晓龙2011概率论与数理统计教程(第2版)(北京:高等教育出版社)第305页]

  • [1] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究. 物理学报, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [2] 吴量, 陈方, 黄重阳, 丁国辉, 丁义明. 基于改进非线性拟合的核磁共振T2谱多指数反演. 物理学报, 2016, 65(10): 107601. doi: 10.7498/aps.65.107601
    [3] 王 鹤, 李鲠颖. 反演与拟合相结合处理核磁共振弛豫数据的方法. 物理学报, 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
    [4] 刘金明, 翟薇, 周凯, 耿德路, 魏炳波. 三元(Co0.5Cu0.5)100-xSnx合金的热物理性质与液固相变机理. 物理学报, 2016, 65(22): 228101. doi: 10.7498/aps.65.228101
    [5] 张振霞, 王辰宇, 李强, 吴书贵. 准线性扩散系数与空间高能电子特征物理量的关系研究. 物理学报, 2014, 63(7): 079401. doi: 10.7498/aps.63.079401
    [6] 张先梅, 万宝年, 阮怀林, 吴振伟. HT-7托卡马克等离子体欧姆放电时电子热扩散系数的研究. 物理学报, 2001, 50(4): 715-720. doi: 10.7498/aps.50.715
    [7] 霍雁, 张存林. 碳纤维复合材料内部缺陷深度的定量红外检测. 物理学报, 2012, 61(14): 144204. doi: 10.7498/aps.61.144204
    [8] 刘炳灿, 潘学琴, 任志明. 非线性系数对超晶格透射的影响. 物理学报, 2006, 55(12): 6595-6599. doi: 10.7498/aps.55.6595
    [9] 刘日平, 周镇华, 张湘义, 张 明, 许应凡, 王文魁, 赵建华. 一种测量液态金属扩散系数的新方法——固/液-液/固复合三层膜法. 物理学报, 1999, 48(3): 416-420. doi: 10.7498/aps.48.416
    [10] 唐晶晶, 冯妍卉, 李威, 崔柳, 张欣欣. 碳纳米管电缆式复合材料的热导率. 物理学报, 2013, 62(22): 226102. doi: 10.7498/aps.62.226102
    [11] 管荻华, 姜莉, 皮斯托亚·詹弗兰科, 帕斯夸利·毛罗, 王刚, 解思深, 杨国权. 阻抗谱法确定扩散系数. 物理学报, 1995, 44(12): 1964-1968. doi: 10.7498/aps.44.1964
    [12] 胡小颖, 王淑敏, 裴艳慧, 田宏伟, 朱品文. 碳纳米片-碳纳米管复合材料的一步合成及其场 发射性质研究. 物理学报, 2013, 62(3): 038101. doi: 10.7498/aps.62.038101
    [13] 王冬杰, 张晓荷, 夏海平. 卟啉铜接枝SiO2有机-无机复合材料及强的非线性折射率. 物理学报, 2011, 60(2): 024210. doi: 10.7498/aps.60.024210
    [14] 卞雷祥, 文玉梅, 李平. 磁致伸缩/压电叠层复合材料磁-机-电耦合系数分析. 物理学报, 2009, 58(6): 4205-4213. doi: 10.7498/aps.58.4205
    [15] 楼国锋, 于歆杰, 卢诗华. 引入界面耦合系数的长片型磁电层状复合材料的等效电路模型. 物理学报, 2018, 67(2): 027501. doi: 10.7498/aps.67.20172080
    [16] 曹永军, 杨旭, 姜自磊. 弹性波通过一维复合材料系统的透射性质. 物理学报, 2009, 58(11): 7735-7740. doi: 10.7498/aps.58.7735
    [17] 汪景昌, 王克逸. 与浓度相关的扩散系数计算——逼近法. 物理学报, 1989, 38(7): 1334-1338. doi: 10.7498/aps.38.1334
    [18] 王克逸;汪景昌. 与浓度相关的扩散系数计算--逼近法. 物理学报, 1989, 38(8): 1329-1333.
    [19] 万晖. 带源项的变系数非线性反应扩散方程的精确解 . 物理学报, 2013, 62(9): 090203. doi: 10.7498/aps.62.090203
    [20] 王宏明, 李沛思, 郑瑞, 李桂荣, 袁雪婷. 强脉冲磁场冲击处理对铝基复合材料塑性的影响机制. 物理学报, 2015, 64(8): 087104. doi: 10.7498/aps.64.087104
  • 引用本文:
    Citation:
计量
  • 文章访问数:  397
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-09
  • 修回日期:  2017-06-06
  • 刊出日期:  2017-09-20

非线性拟合方法用于透射式脉冲红外技术测试碳/碳复合材料的热扩散系数

  • 1. 北京理工大学光电学院, 精密光电测试仪器及技术北京市重点实验室, 北京 100081;
  • 2. Nuclear Engineering Division, Argonne National Laboratory, IL 60439;
  • 3. 首都师范大学物理系, 太赫兹光电子学教育部重点实验室, 北京市太赫兹波谱与成像重点实验室, 北京成像技术高精尖中心, 北京 100048;
  • 4. 重庆师范大学计算机与信息科学学院, 机器人与智能装备工程研究中心, 重庆 400047
  • 通信作者: 赵跃进, yjzhao@bit.edu.cn
    基金项目: 

    北京市教育部市属高校创新能力建设项目(批准号:TJSHG201510028008)和国家自然科学基金(批准号:U1233120)资助的课题.

摘要: 为了测试碳/碳复合材料的热扩散系数,本文提出了非线性拟合用于透射式脉冲红外检测的数据处理方法.非线性拟合通过循环迭代的方法持续调整拟合参数,让理论值不断逼近实验值,直至获得最佳结果.传统的透射式脉冲红外成像技术利用半高时间法测试材料的热扩散系数,但通常会受到采集时间不足和信噪比差的限制.本文提出的非线性拟合方法可以有效消除或减弱这两种影响.在使用该方法之前,首先选用常见的304不锈钢评估了该方法的测量精度及拟合长度对测试结果的影响.结果显示304不锈钢的测量精度达到0.3%,且当拟合长度不小于半高时间法采集时间的1/5时,拟合长度对非线性拟合结果影响很小.随后使用该拟合方法测试了不同厚度的碳/碳复合材料试件,并通过热扩散系数测量结果分析了试件之间的热参数差异性和材料自身的均匀性.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回