搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国产MOCVD-YBCO带材高温超导线圈研制与磁场温度特性研究

丁发柱 张京业 谭运飞 陈治友 董泽斌 张慧亮 商红静 许文娟 张贺 屈飞 高召顺 周微微 古宏伟

国产MOCVD-YBCO带材高温超导线圈研制与磁场温度特性研究

丁发柱, 张京业, 谭运飞, 陈治友, 董泽斌, 张慧亮, 商红静, 许文娟, 张贺, 屈飞, 高召顺, 周微微, 古宏伟
PDF
导出引用
导出核心图
  • 超导磁体的场强与超导材料的载流能力、磁体口径和低温环境有密切关系.为了在中高温区域实现高磁场强度的超导磁体,采用国产第二代高温超导带材,成功绕制出内直径为100 mm的高温超导线圈.该超导线圈在77,65,55和46 K不同温区下进行了性能测试,其最大运行电流分别为65,147,257和338 A,对应的中心磁场强度分别为0.78,1.77,3.1和4.08 T.所研制的超导线圈的中平面上磁场基本一致.
      通信作者: 古宏伟, guhw@mail.iee.ac.cn
    • 基金项目: 国家高技术研究发展计划(批准号:2014AA032702)、国家自然科学基金(批准号:51577180,51577181)、北京市自然科学基金委面上项目(批准号:2152035)和中国科学院青年创新促进会(批准号:2016128)资助的课题.
    [1]

    Wang Q L 2007 High Magnetic Field Superconducting Magnet (Beijing:Science Press) pp118-128 (in Chinese) [王秋良 2007 高磁场超导磁体科学(北京:科学出版社)第118–128页]

    [2]

    Xu A, Delgado L, Khatri N, Liu Y, Selvamanickam V, Abraimov D, Jaroszynski J, Kametani F, Larbalestier D C 2014 APL Mater. 2 046111

    [3]

    Xu A, Jaroszynski J, Kametani F, Larbalestier D 2015 Appl. Phys. Lett. 106 052603

    [4]

    Rizzo F, Augieri A, Angrisani Armenio A, Galluzzi V, Mancini A, Pinto V, Rufoloni A, Vannozzi A, Bianchetti M, Kursumovic A, MacManus-Driscoll J L, Meledin A, van Tendeloo G, Celentano1 G 2016 APL Mater. 4 061101

    [5]

    Selvamanickam V, Kesgin I, Guevara A, Shi T, Yao Y, Zhang Yao, Zhang Y X, Majkic G 2010 Progress in Research and Development of IBAD-MOCVD Based Superconducting Wires (Washington D.C.:Applied Superconductivity Conference)

    [6]

    Moon S H 2013 SuNAM Developed New Process Named RCE-DR:the Practical Highest Throughput Process (Genova:European Conference on Applied Superconductivity)

    [7]

    Iijima Y, Adachi Y, Igarashi M, Kakimoto K, Fujita S, Daibo M, Ohsugi M, Takemoto T, Nakamura N, Kurihara C, Machida K, Hanyu S, Kikutake R, Nagata M, Tatano F, Itoh M 2014 Development for Mass Production of Homogeneous RE123 Coated Conductors by Hot-wall PLD Process on IBAD Template Technique (Charlotte:Applied Superconductivity Conference)

    [8]

    Haugan T, Barnes P N, Wheeler R, Meisenkothen F, Sumption M 2004 Nature 430 867

    [9]

    MacManus-Driscoll J L, Foltyn S R, Jia Q X, Wang H, Serquis A, Civale L, Maiorov B, Hawley M E, Maley M P, Peterson D E 2004 Nat. Mater. 3 439

    [10]

    Gutiérrez J, Llordes A, Gazquez J, Gibert M, Roma N, Ricart S, Pomar A, Sanditmenge F, Mestres N, Puig T, Obradors X 2007 Nat. Mater. 6 367

    [11]

    Coll M, Ye S, Rouco V, Palau A, Guzman R, Gazquez J, Arbiol J, Suo H, Puig T, Obradors X 2013 Supercond. Sci. Technol. 26 015001

    [12]

    Selvamanickam V, Xu A, Liu Y, Khatri N D, Lei C, Chen Y, Galstyan E, Majkic G 2014 Supercond. Sci. Technol. 27 055010

    [13]

    Ding F Z, Gu H W, Zhang T, Wang H Y, Qu F, Qiu Q Q, Dai S T, Peng X Y, Cao J L 2014 Appl. Surf. Sci. 314 622

    [14]

    Zhao R, Li W W, Lee J H, Choi E M, Liang Y, Zhang W, Tang R J, Wang H Y, Jia Q X, MacManus-Driscoll J L, Yang H 2014 Adv. Funct. Mater. 24 5240

    [15]

    Weijers H W, Markiewicz W D, Voran A J, Gundlach S R, Sheppard W R, Jarvis B, Johnson Z L, Noyes P D, Lu J, Kandel H, Bai H, Gavrilin A V, Viouchkov Y L, Larbalestier D C, Abraimov D V 2014 IEEE Trans. Appl. Supercond. 24 4301805

    [16]

    Iwasa Y, Bascuñán J, Hahn S, Voccio J, Kim Y, Lécrevisse T, Song J, Kajikawa K 2015 IEEE. Trans. Appl. Supercond. 25 4301205

    [17]

    Fujita S, Satoh H, Daibo M, Iijima Y, Itoh M, Oguro H, Awaji S, Watanabe K 2015 IEEE Trans. Appl. Supercond. 25 8400304

    [18]

    Gagnon B, Hahn S, Park D K, Voccio J, Kim K, Bascuña J, Iwasa Y 2013 Physica C 486 26

    [19]

    Kim S B, Kimoto T, Hahn S, Iwasa Y, Voccio J, Tomita M 2013 Physica C 484 295

    [20]

    Kesgin I, Kasa M, Ivanyushenkov Y, Welp U 2017 Supercond. Sci. Technol. 30 04LT01

    [21]

    Yoon S, Kim J, Cheon K, Lee H, Hahn S, Moon S H 2016 Supercond. Sci. Technol. 29 04LT04

    [22]

    Zhu G, Liu J H, Cheng J S, Feng Z K, Dai Y M, Wang Q L 2016 Acta Phys. Sin. 65 058401 (in Chinese) [朱光, 刘建华, 程军胜, 冯忠奎, 戴银明, 王秋良 2016 物理学报 65 058401]

  • [1]

    Wang Q L 2007 High Magnetic Field Superconducting Magnet (Beijing:Science Press) pp118-128 (in Chinese) [王秋良 2007 高磁场超导磁体科学(北京:科学出版社)第118–128页]

    [2]

    Xu A, Delgado L, Khatri N, Liu Y, Selvamanickam V, Abraimov D, Jaroszynski J, Kametani F, Larbalestier D C 2014 APL Mater. 2 046111

    [3]

    Xu A, Jaroszynski J, Kametani F, Larbalestier D 2015 Appl. Phys. Lett. 106 052603

    [4]

    Rizzo F, Augieri A, Angrisani Armenio A, Galluzzi V, Mancini A, Pinto V, Rufoloni A, Vannozzi A, Bianchetti M, Kursumovic A, MacManus-Driscoll J L, Meledin A, van Tendeloo G, Celentano1 G 2016 APL Mater. 4 061101

    [5]

    Selvamanickam V, Kesgin I, Guevara A, Shi T, Yao Y, Zhang Yao, Zhang Y X, Majkic G 2010 Progress in Research and Development of IBAD-MOCVD Based Superconducting Wires (Washington D.C.:Applied Superconductivity Conference)

    [6]

    Moon S H 2013 SuNAM Developed New Process Named RCE-DR:the Practical Highest Throughput Process (Genova:European Conference on Applied Superconductivity)

    [7]

    Iijima Y, Adachi Y, Igarashi M, Kakimoto K, Fujita S, Daibo M, Ohsugi M, Takemoto T, Nakamura N, Kurihara C, Machida K, Hanyu S, Kikutake R, Nagata M, Tatano F, Itoh M 2014 Development for Mass Production of Homogeneous RE123 Coated Conductors by Hot-wall PLD Process on IBAD Template Technique (Charlotte:Applied Superconductivity Conference)

    [8]

    Haugan T, Barnes P N, Wheeler R, Meisenkothen F, Sumption M 2004 Nature 430 867

    [9]

    MacManus-Driscoll J L, Foltyn S R, Jia Q X, Wang H, Serquis A, Civale L, Maiorov B, Hawley M E, Maley M P, Peterson D E 2004 Nat. Mater. 3 439

    [10]

    Gutiérrez J, Llordes A, Gazquez J, Gibert M, Roma N, Ricart S, Pomar A, Sanditmenge F, Mestres N, Puig T, Obradors X 2007 Nat. Mater. 6 367

    [11]

    Coll M, Ye S, Rouco V, Palau A, Guzman R, Gazquez J, Arbiol J, Suo H, Puig T, Obradors X 2013 Supercond. Sci. Technol. 26 015001

    [12]

    Selvamanickam V, Xu A, Liu Y, Khatri N D, Lei C, Chen Y, Galstyan E, Majkic G 2014 Supercond. Sci. Technol. 27 055010

    [13]

    Ding F Z, Gu H W, Zhang T, Wang H Y, Qu F, Qiu Q Q, Dai S T, Peng X Y, Cao J L 2014 Appl. Surf. Sci. 314 622

    [14]

    Zhao R, Li W W, Lee J H, Choi E M, Liang Y, Zhang W, Tang R J, Wang H Y, Jia Q X, MacManus-Driscoll J L, Yang H 2014 Adv. Funct. Mater. 24 5240

    [15]

    Weijers H W, Markiewicz W D, Voran A J, Gundlach S R, Sheppard W R, Jarvis B, Johnson Z L, Noyes P D, Lu J, Kandel H, Bai H, Gavrilin A V, Viouchkov Y L, Larbalestier D C, Abraimov D V 2014 IEEE Trans. Appl. Supercond. 24 4301805

    [16]

    Iwasa Y, Bascuñán J, Hahn S, Voccio J, Kim Y, Lécrevisse T, Song J, Kajikawa K 2015 IEEE. Trans. Appl. Supercond. 25 4301205

    [17]

    Fujita S, Satoh H, Daibo M, Iijima Y, Itoh M, Oguro H, Awaji S, Watanabe K 2015 IEEE Trans. Appl. Supercond. 25 8400304

    [18]

    Gagnon B, Hahn S, Park D K, Voccio J, Kim K, Bascuña J, Iwasa Y 2013 Physica C 486 26

    [19]

    Kim S B, Kimoto T, Hahn S, Iwasa Y, Voccio J, Tomita M 2013 Physica C 484 295

    [20]

    Kesgin I, Kasa M, Ivanyushenkov Y, Welp U 2017 Supercond. Sci. Technol. 30 04LT01

    [21]

    Yoon S, Kim J, Cheon K, Lee H, Hahn S, Moon S H 2016 Supercond. Sci. Technol. 29 04LT04

    [22]

    Zhu G, Liu J H, Cheng J S, Feng Z K, Dai Y M, Wang Q L 2016 Acta Phys. Sin. 65 058401 (in Chinese) [朱光, 刘建华, 程军胜, 冯忠奎, 戴银明, 王秋良 2016 物理学报 65 058401]

  • [1] 杜家驹, 姜建义, 王翔, 尹华清. 单相钇钡铜氧高温超导体的超导转变与内耗原位研究. 物理学报, 1988, 37(9): 1556-1559. doi: 10.7498/aps.37.1556
    [2] 超导材料组. 较低温扩散法Nb3Sn带绕制成十万高斯超导磁体. 物理学报, 1975, 146(6): 452-453. doi: 10.7498/aps.24.452
    [3] 倪志鹏, 王秋良, 严陆光. 短腔、自屏蔽磁共振成像超导磁体系统的混合优化设计方法. 物理学报, 2013, 62(2): 020701. doi: 10.7498/aps.62.020701
    [4] 于红云. 超导磁体剩余磁场对软磁材料测试的影响. 物理学报, 2014, 63(4): 047502. doi: 10.7498/aps.63.047502
    [5] 朱光, 刘建华, 程军胜, 冯忠奎, 戴银明, 王秋良. 25T超导磁体优化中线圈数量影响分析. 物理学报, 2016, 65(5): 058401. doi: 10.7498/aps.65.058401
    [6] 杜晓纪, 王为民, 兰贤辉, 李超. 1.5 T关节磁共振成像超导磁体的设计、制作与测试. 物理学报, 2017, 66(24): 248401. doi: 10.7498/aps.66.248401
    [7] 张国庆, 杜晓纪, 赵玲, 宁飞鹏, 姚卫超, 朱自安. 基于0—1整数线性规划的自屏蔽磁共振成像超导磁体设计 . 物理学报, 2012, 61(22): 228701. doi: 10.7498/aps.61.228701
    [8] 马俊, 杨万民, 李佳伟, 王妙, 陈森林. 辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响. 物理学报, 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [9] 马俊, 陈章龙, 县涛, 魏学刚, 杨万民, 陈森林, 李佳伟. 空心圆柱形永磁体内径对单畴GdBCO超导块材磁悬浮力的影响. 物理学报, 2018, 67(7): 077401. doi: 10.7498/aps.67.20172418
    [10] 程开甲, 李文铸, 吴建斌, 陈锋. 准二维玻色凝聚、氧空位、高温超导. 物理学报, 1989, 38(7): 1199-1204. doi: 10.7498/aps.38.1199
    [11] D.E. AlBURGER, K.W. JONES, Y.D. YAO, Y.H. KAO, 陶振兰. 利用氘粒子活化分析测定高温超导体中的氧含量. 物理学报, 1993, 42(2): 326-330. doi: 10.7498/aps.42.326
    [12] K. Watanabe, 张现平, 马衍伟, 高召顺, 禹争光, 闻海虎. 纳米C和SiC掺杂对MgB2带材超导性能的影响. 物理学报, 2006, 55(9): 4873-4877. doi: 10.7498/aps.55.4873
    [13] 马俊, 杨万民, 王妙, 陈森林, 冯忠岭. 辅助永磁体磁化方式对单畴GdBCO超导块材捕获磁场分布及其磁悬浮力的影响. 物理学报, 2013, 62(22): 227401. doi: 10.7498/aps.62.227401
    [14] 吴杭生. 铁磁体的超导电理论. 物理学报, 1963, 94(2): 103-115. doi: 10.7498/aps.19.103
    [15] 锰锌铁氧体单晶小组. 高温氧压单晶炉. 物理学报, 1976, 148(2): 178-178. doi: 10.7498/aps.25.178
    [16] 刘 洪, 李英骏, 梁芳营. 高温超导的压力效应研究. 物理学报, 2006, 55(7): 3683-3687. doi: 10.7498/aps.55.3683
    [17] 超导材料组. 多股Nb3Sn超导小磁体的研制. 物理学报, 1976, 149(3): 268-269. doi: 10.7498/aps.25.268
    [18] 王勇刚, 逄焕刚, 刘楣. 高温超导体的电子比热研究. 物理学报, 2000, 49(3): 548-552. doi: 10.7498/aps.49.548
    [19] 李晓薇. 超导体/铁磁体绝缘层-超导体隧道结的直流Josephson效应. 物理学报, 2002, 51(8): 1821-1825. doi: 10.7498/aps.51.1821
    [20] 杨万民, 李国政, 程晓芳, 郭晓丹, 马俊. 永磁体辅助下单畴GdBCO超导体和永磁体之间的磁悬浮力研究. 物理学报, 2011, 60(2): 027401. doi: 10.7498/aps.60.027401
  • 引用本文:
    Citation:
计量
  • 文章访问数:  430
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-29
  • 修回日期:  2018-01-04
  • 刊出日期:  2018-03-20

国产MOCVD-YBCO带材高温超导线圈研制与磁场温度特性研究

  • 1. 中国科学院电工研究所, 北京 100190;
  • 2. 中国科学院应用超导重点实验室, 北京 100190;
  • 3. 中国科学院大学, 北京 100049;
  • 4. 中国科学院强磁场科学中心, 合肥 230031
  • 通信作者: 古宏伟, guhw@mail.iee.ac.cn
    基金项目: 

    国家高技术研究发展计划(批准号:2014AA032702)、国家自然科学基金(批准号:51577180,51577181)、北京市自然科学基金委面上项目(批准号:2152035)和中国科学院青年创新促进会(批准号:2016128)资助的课题.

摘要: 超导磁体的场强与超导材料的载流能力、磁体口径和低温环境有密切关系.为了在中高温区域实现高磁场强度的超导磁体,采用国产第二代高温超导带材,成功绕制出内直径为100 mm的高温超导线圈.该超导线圈在77,65,55和46 K不同温区下进行了性能测试,其最大运行电流分别为65,147,257和338 A,对应的中心磁场强度分别为0.78,1.77,3.1和4.08 T.所研制的超导线圈的中平面上磁场基本一致.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回