搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于压缩感知的三维导体目标电磁散射问题的快速求解方法

丁亚辉 孙玉发 朱金玉

一种基于压缩感知的三维导体目标电磁散射问题的快速求解方法

丁亚辉, 孙玉发, 朱金玉
PDF
导出引用
  • 提出了一种将压缩感知和特征基函数结合的方法来计算三维导体目标的雷达散射截面.利用压缩感知理论,将随机选择的矩量法阻抗矩阵作为测量矩阵,将激励电压视为测量值,然后再用恢复算法可实现二维或二维半目标感应电流的求解.对于三维导体目标,使用Rao-Wilton-Glisson基函数表示的感应电流在常用的离散余弦变换基、小波基等稀疏基上不稀疏.为此,本文将计算出的目标特征基函数作为稀疏基,用广义正交匹配追踪算法作为恢复算法来加速恢复过程,并应用到三维导体目标的雷达散射截面计算中.数值结果证明了本文方法的准确性与高效性.
      通信作者: 孙玉发, yfsun@ahu.edu.cn
    [1]

    Gibson W C 2014 J. Electromagn. Waves Appl. 1 181

    [2]

    Andriulli F P, Cools K, Bagci H, Olyslager F, Buffa A, Christiansen S, Michelssen E 2012 IEEE Trans. Antennas Propag. 56 2398

    [3]

    Chen Y, Zuo S, Zhang Y, Zhao X, Zhang H 2017 IEEE Trans. Antennas Propag. 65 3782

    [4]

    Cand E J, Wakin M B 2008 IEEE Signal Process. Mag. 25 21

    [5]

    Ji S, Xue Y, Carin L 2008 IEEE Trans. Signal Process. 65 3782

    [6]

    Ender J H G 2010 IEEE Trans. Signal Process. 65 3782

    [7]

    Wang Z, Wang B Z 2014 Acta Phys. Sci. 63 120202 (in Chinese)[王哲, 王秉中 2014 物理学报 63 120202]

    [8]

    Chai S R, Guo L X, Li J, Li K 2015 Asia-Pacific Microwave Conference Nanjing, China Dec. 6-9, 2015 p1

    [9]

    Kong M, Chen M S, Wu B, Wu X 2017 IEEE Antennas Wirel. Propag. Lett. 1 99

    [10]

    Wang Z, Wang B Z, Wen Y Q, Wang R 2015 IEEE International Symposium on Antennas and Propagation Usnc/ursi National Radio Science Meeting Vancouver, BC, July 19-24, 2015 p1488

    [11]

    Chao X Y, Chen M S, Wu X L, Shen J 2013 Chin. J. Electron. 41 2361 (in Chinese)[曹欣远, 陈明生, 吴先良, 沈晶 2013 电子学报 41 2361]

    [12]

    Du H M, Chen M S, Wu X L 2012 International Conference on Microwave and Millimeter Wave Technology Shenzhen, China May 5-8, 2012 p1

    [13]

    Chai S R, Guo L X 2015 Acta Phys. Sin. 64 060301 (in Chinese)[柴水荣, 郭立新 2015 物理学报 64 060301]

    [14]

    Prakash V V S, Mittra R 2003 Microw. Opt. Technol. Lett. 36 95

    [15]

    Sun Y F, Chan C H, Mittra R, Tsang L 2003 Antennas and Propagation Society International Symposium Columbus, OH, USA June 22-27, 2003 p1068

    [16]

    Wang Z G 2014 Ph. D. Dissertation (Hefei:Anhui University) (in Chinese)[王仲根 2014 博士学位论文(合肥:安徽大学)]

    [17]

    Jian W, Kwon S, Shim B 2012 IEEE Trans. Signal Process. 60 6202

    [18]

    Tropp J A, Gilbert A C 2007 IEEE Trans. Inf. Theory 53 4665

    [19]

    Baraniuk R G, Cevher V, Duarte M F, Hegde C 2010 IEEE Trans. Inf. Theory 56 1982

    [20]

    Duarte M F, Eldar Y C 2011 IEEE Trans. Signal Process. 59 4053

  • [1]

    Gibson W C 2014 J. Electromagn. Waves Appl. 1 181

    [2]

    Andriulli F P, Cools K, Bagci H, Olyslager F, Buffa A, Christiansen S, Michelssen E 2012 IEEE Trans. Antennas Propag. 56 2398

    [3]

    Chen Y, Zuo S, Zhang Y, Zhao X, Zhang H 2017 IEEE Trans. Antennas Propag. 65 3782

    [4]

    Cand E J, Wakin M B 2008 IEEE Signal Process. Mag. 25 21

    [5]

    Ji S, Xue Y, Carin L 2008 IEEE Trans. Signal Process. 65 3782

    [6]

    Ender J H G 2010 IEEE Trans. Signal Process. 65 3782

    [7]

    Wang Z, Wang B Z 2014 Acta Phys. Sci. 63 120202 (in Chinese)[王哲, 王秉中 2014 物理学报 63 120202]

    [8]

    Chai S R, Guo L X, Li J, Li K 2015 Asia-Pacific Microwave Conference Nanjing, China Dec. 6-9, 2015 p1

    [9]

    Kong M, Chen M S, Wu B, Wu X 2017 IEEE Antennas Wirel. Propag. Lett. 1 99

    [10]

    Wang Z, Wang B Z, Wen Y Q, Wang R 2015 IEEE International Symposium on Antennas and Propagation Usnc/ursi National Radio Science Meeting Vancouver, BC, July 19-24, 2015 p1488

    [11]

    Chao X Y, Chen M S, Wu X L, Shen J 2013 Chin. J. Electron. 41 2361 (in Chinese)[曹欣远, 陈明生, 吴先良, 沈晶 2013 电子学报 41 2361]

    [12]

    Du H M, Chen M S, Wu X L 2012 International Conference on Microwave and Millimeter Wave Technology Shenzhen, China May 5-8, 2012 p1

    [13]

    Chai S R, Guo L X 2015 Acta Phys. Sin. 64 060301 (in Chinese)[柴水荣, 郭立新 2015 物理学报 64 060301]

    [14]

    Prakash V V S, Mittra R 2003 Microw. Opt. Technol. Lett. 36 95

    [15]

    Sun Y F, Chan C H, Mittra R, Tsang L 2003 Antennas and Propagation Society International Symposium Columbus, OH, USA June 22-27, 2003 p1068

    [16]

    Wang Z G 2014 Ph. D. Dissertation (Hefei:Anhui University) (in Chinese)[王仲根 2014 博士学位论文(合肥:安徽大学)]

    [17]

    Jian W, Kwon S, Shim B 2012 IEEE Trans. Signal Process. 60 6202

    [18]

    Tropp J A, Gilbert A C 2007 IEEE Trans. Inf. Theory 53 4665

    [19]

    Baraniuk R G, Cevher V, Duarte M F, Hegde C 2010 IEEE Trans. Inf. Theory 56 1982

    [20]

    Duarte M F, Eldar Y C 2011 IEEE Trans. Signal Process. 59 4053

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1913
  • PDF下载量:  259
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-28
  • 修回日期:  2018-03-22
  • 刊出日期:  2019-05-20

一种基于压缩感知的三维导体目标电磁散射问题的快速求解方法

  • 1. 安徽大学电子信息工程学院, 合肥 230601
  • 通信作者: 孙玉发, yfsun@ahu.edu.cn

摘要: 提出了一种将压缩感知和特征基函数结合的方法来计算三维导体目标的雷达散射截面.利用压缩感知理论,将随机选择的矩量法阻抗矩阵作为测量矩阵,将激励电压视为测量值,然后再用恢复算法可实现二维或二维半目标感应电流的求解.对于三维导体目标,使用Rao-Wilton-Glisson基函数表示的感应电流在常用的离散余弦变换基、小波基等稀疏基上不稀疏.为此,本文将计算出的目标特征基函数作为稀疏基,用广义正交匹配追踪算法作为恢复算法来加速恢复过程,并应用到三维导体目标的雷达散射截面计算中.数值结果证明了本文方法的准确性与高效性.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回