搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

W-In体系溶质晶界偏聚行为的第一性原理计算

王奇 唐法威 侯超 吕皓 宋晓艳

引用本文:
Citation:

W-In体系溶质晶界偏聚行为的第一性原理计算

王奇, 唐法威, 侯超, 吕皓, 宋晓艳

First-principles calculations of solute-segreagtion of W-In alloys at grain boundaries

Wang Qi, Tang Fa-Wei, Hou Chao, Lü Hao, Song Xiao-Yan
PDF
HTML
导出引用
  • 基于第一性原理构建了钨基合金体系的溶质偏聚模型, 以W-In体系为例研究了不同浓度下溶质的晶界偏聚行为和成键特征, 从电子结构层面揭示了W-In体系的键合作用, 预测了W-In体系界面稳定性随溶质浓度的变化规律. 结合键布居、电荷密度、差分电荷密度和态密度等电子结构分析, 发现了W-In体系中溶质原子在偏聚过程中的键性转变特征, 阐明了W-In键由晶粒内部的离子键过渡为晶界区域强共价键的微观机理. 模型计算首次得到了W-In体系中溶质本征偏聚能随In浓度的非单调变化规律, 结合键合作用和能量分析揭示了溶质浓度对本征偏聚能的影响机制. 计算预测了W-In体系达到高热稳定性所需的最佳溶质浓度范围和应避开的溶质浓度范围. 本研究为具有高温稳定性的钨基合金材料的设计与制备提供了理论基础和定量化指导.
    In a tungsten-based alloy system, the appropriate solute elements are selected to produce strong segregation effect to reduce the interfacial formation energy, which can effectively improve the mechanical property and thermal stability of the system. Based on the first principles calculation, the solute segregation model of tungsten-based alloys is constructed. The W-In alloy is taken for example to study the grain boundary segregation behavior and bonding characteristics of solute at different concentrations. The bonding of the W-In system is revealed from the electronic structure, and the variation of the interface stability of the W-In system with the solute concentration is predicted. Based on the electronic structure analysis of bond population, differential charge density and density of states, the bond transition characteristics of solute atoms in the W-In system in the segregation process are found, and the microscopic mechanism of the W-In bond transitioning from the ionic bond inside the grain to the strong covalent bond in the grain boundary region is elucidated: the difference between the grain boundary and the intragranular structure leads to a decrease in the valence state of the W atom in the grain boundary and the oxidizability is weakened, eventually leading to the W-In bond transition. The non-monotonic variation of the intrinsic segregation energy of the solute with the concentration of In in the W-In system is obtained. The mechanism of the influence of solute concentration on the intrinsic segregation energy is revealed by analyzing the bond interaction and energy: the solute concentration remarkably affects the bond strength before and after the W-In bond segregation, resulting in a significant decrease in the segregation ability when the solute concentration is close to 0.0976, and finally the variation of the segregation energy with solute concentration is obtained. Based on the analysis of the phase mechanical stability and the solute segregation in the grain boundary, without considering the vacancy concentration, the optimal solute concentration range and the range that needs to be circumvented in the W-In alloy system with high thermal stability are predicted by the calculations of the model, which are 0.106−0.125 and 0.0632−0.106, respectively. This study provides theoretical basis and quantitative guidance for designing and preparing the tungsten-based alloy materials with high thermal stability.
      通信作者: 宋晓艳, xysong@bjut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB0703902, 2016YFB0700503)和国家自然科学基金(批准号: 51631002, 51425101)资助的课题.
      Corresponding author: Song Xiao-Yan, xysong@bjut.edu.cn
    • Funds: Project supported by the National Key Program of Research and Development (Grant Nos. 2018YFB0703902, 2016YFB0700503) and the National Natural Science Foundation of China (Grant Nos. 51631002, 51425101).
    [1]

    Zhou X Q, Li S K, Liu J X, Wang Y C, Wang X 2010 Mater. Sci. Eng. A 527 4881Google Scholar

    [2]

    Scapin M 2015 Int. J. Refract. Met. Hard Mater. 50 258Google Scholar

    [3]

    Nguyen Manh D, Muzyk M, Kurzydlowski K J, Baluc N L, Rieth M, Dudarev S L 2011 Key Eng. Mater. 465 15Google Scholar

    [4]

    Tschopp M A, Murdoch H A, Kecskes L J, Darling K A 2014 JOM 66 1000

    [5]

    Posthill J B, Hogwood M C, Edmonds D V 1986 Powder Metall. 29 45

    [6]

    Gul H, Uysal M, Çetinkaya T, Guler M O, Alp A, Akbulut H 2014 Int. J. Hydrogen Energ. 39 21414Google Scholar

    [7]

    Millett P C, Selvam R P, Saxena A 2007 Acta Mater. 55 2329Google Scholar

    [8]

    Hirouchi T, Takaki T, Tomita Y 2010 Int. J. Mech. Sci. 52 309Google Scholar

    [9]

    Song X, Zhang J, Li L, Yang K, Liu G 2006 Acta Mater. 54 5541Google Scholar

    [10]

    Liu F, Kirchheim R 2004 Scr. Mater. 51 521Google Scholar

    [11]

    Liu F, Kirchheim R 2004 J. Cryst. Growth 264 385Google Scholar

    [12]

    Liu F, Yang G, Kirchheim R 2004 J. Cryst. Growth 264 392Google Scholar

    [13]

    Liu F, Kirchheim R 2004 Thin Solid Films 466 108Google Scholar

    [14]

    Darling K A, Vanleeuwen B K, Koch C C, Scattergood R O 2010 Mater. Sci. Eng. A 527 3572Google Scholar

    [15]

    Chookajorn T, Murdoch H A, Schuh C A 2012 Science 337 951Google Scholar

    [16]

    Kawazoe Y 2001 Mater. Design 22 61Google Scholar

    [17]

    Bond A D, Solanko K A, Jacco V D S, Neumann M A 2011 CrystEngComm 13 1768Google Scholar

    [18]

    Braithwaite J S, Rez P 2005 Acta Mater. 53 2715Google Scholar

    [19]

    Yamaguchi M, Kaburaki H, Shiga M 2004 J. Phys.:Condens. Matter 16 3933Google Scholar

    [20]

    Reza M, Laws K J, Nikki S, Michael F 2018 Acta Mater. 158 257Google Scholar

    [21]

    Wu X, You Y W, Kong X S, Chen J L, Luo G N, Lu G H, Liu C S, Wang Z 2016 Acta Mater. 120 315Google Scholar

    [22]

    孟凡顺, 李久会, 赵星 2014 物理学报 23 237102Google Scholar

    Meng F, Li J H, Zhao X 2014 Acta Phys. Sin. 23 237102Google Scholar

    [23]

    Tang F, Liu X, Wang H, Hou C, Lu H, Nie Z, Song X 2019 Nanoscale 11 1813Google Scholar

    [24]

    Scheiber D, Pippan R, Puschnig P, Ruban A, Romaner L 2016 Int. J. Refract. Met. Hard Mater. 60 75Google Scholar

    [25]

    Segall M D, Lindan P J D, Probert M J 2002 J. Phys.:Condens. Matter 14 2717Google Scholar

    [26]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [28]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566Google Scholar

    [29]

    Pfrommer B G, Cote M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233Google Scholar

    [30]

    Scheiber D, Razumovskiy V I, Puschnig P, Pippan R, Romaner L 2015 Acta Mater. 88 180Google Scholar

    [31]

    Zdanuk E J, Krock R H 1969 US Patent 3 423 203

    [32]

    Chelikowsky J R, Cohen M L 1976 Phys. Rev. B 14 556Google Scholar

    [33]

    Trelewicz J R, Schuh C A 2009 Phys. Rev. B 79 094112Google Scholar

    [34]

    Asta M, Wolverton C, Ozoliņš V 2004 Phys. Rev. B 69 144109Google Scholar

  • 图 1  $ {\varSigma 3} $ {111}$\left\langle {\; 1\; \bar1 \; 0\; } \right\rangle $晶界模型和溶质偏聚位点示意图

    Fig. 1.  Diagram of $ {\varSigma 3} ${111}$\left\langle {\; 1\; \bar1 \; 0\; } \right\rangle $ grain boundary model and solute segregation sites.

    图 2  不同溶质浓度下晶内和晶界区域的W—In键Mulliken布居分析 (a) xA = 0.0488; (b) xA = 0.0732; (c) xA = 0.122

    Fig. 2.  Mulliken population analysis of W—In bond at grain interior and grain boundary at different solute concentrations: (a) xA = 0.0488; (b) xA = 0.0732; (c) xA = 0.122.

    图 3  不同溶质浓度下W-In界面特性的电荷密度和差分电荷密度 (a) xA = 0.0488; (b) xA = 0.0732; (c) xA = 0.122

    Fig. 3.  Charge density and charge density difference of W-In interface characteristics at different solute concentrations: (a) xA = 0.0488; (b) xA = 0.0732; (c) xA = 0.122

    图 4  不同溶质浓度晶内和晶界区域W和In原子的PDOS (a) xA = 0.0488; (b) xA = 0.122

    Fig. 4.  PDOS of W and In atoms at grain interior and grain boundary at different solute concentrations: (a) xA = 0.0488; (b) xA = 0.122

    图 5  不同位点下偏聚能随溶质浓度的变化关系

    Fig. 5.  Segregation energy as a function of solute concentration corresponding to different sites.

    图 6  溶质浓度为0.0976时溶质偏聚前后体系晶内和晶界区域W和In原子PDOS

    Fig. 6.  PDOS of W and In atoms at grain interior and grain boundary before and after segregation at solute concentration of 0.0976.

    图 7  W-In体系溶质浓度选取范围示意图

    Fig. 7.  Diagram of solute concentration selection range in W-In system.

    表 1  不同溶质浓度下的W-In体系弹性常数计算结果

    Table 1.  Calculation results of elastic constants of W-In system at different solute concentrations. GPa

    溶质浓度 C11 C12 C44 C11C12 C11 + 2C12
    0 501.5 203.4 127.2 298.1 908.3
    0.0625 488.0 201.7 140.0 246.3 2128.5
    0.125 364.5 222.3 143.9 220.6 809.1
    0.25 208.0 245.9 138.6 –37.9 699.8
    下载: 导出CSV
  • [1]

    Zhou X Q, Li S K, Liu J X, Wang Y C, Wang X 2010 Mater. Sci. Eng. A 527 4881Google Scholar

    [2]

    Scapin M 2015 Int. J. Refract. Met. Hard Mater. 50 258Google Scholar

    [3]

    Nguyen Manh D, Muzyk M, Kurzydlowski K J, Baluc N L, Rieth M, Dudarev S L 2011 Key Eng. Mater. 465 15Google Scholar

    [4]

    Tschopp M A, Murdoch H A, Kecskes L J, Darling K A 2014 JOM 66 1000

    [5]

    Posthill J B, Hogwood M C, Edmonds D V 1986 Powder Metall. 29 45

    [6]

    Gul H, Uysal M, Çetinkaya T, Guler M O, Alp A, Akbulut H 2014 Int. J. Hydrogen Energ. 39 21414Google Scholar

    [7]

    Millett P C, Selvam R P, Saxena A 2007 Acta Mater. 55 2329Google Scholar

    [8]

    Hirouchi T, Takaki T, Tomita Y 2010 Int. J. Mech. Sci. 52 309Google Scholar

    [9]

    Song X, Zhang J, Li L, Yang K, Liu G 2006 Acta Mater. 54 5541Google Scholar

    [10]

    Liu F, Kirchheim R 2004 Scr. Mater. 51 521Google Scholar

    [11]

    Liu F, Kirchheim R 2004 J. Cryst. Growth 264 385Google Scholar

    [12]

    Liu F, Yang G, Kirchheim R 2004 J. Cryst. Growth 264 392Google Scholar

    [13]

    Liu F, Kirchheim R 2004 Thin Solid Films 466 108Google Scholar

    [14]

    Darling K A, Vanleeuwen B K, Koch C C, Scattergood R O 2010 Mater. Sci. Eng. A 527 3572Google Scholar

    [15]

    Chookajorn T, Murdoch H A, Schuh C A 2012 Science 337 951Google Scholar

    [16]

    Kawazoe Y 2001 Mater. Design 22 61Google Scholar

    [17]

    Bond A D, Solanko K A, Jacco V D S, Neumann M A 2011 CrystEngComm 13 1768Google Scholar

    [18]

    Braithwaite J S, Rez P 2005 Acta Mater. 53 2715Google Scholar

    [19]

    Yamaguchi M, Kaburaki H, Shiga M 2004 J. Phys.:Condens. Matter 16 3933Google Scholar

    [20]

    Reza M, Laws K J, Nikki S, Michael F 2018 Acta Mater. 158 257Google Scholar

    [21]

    Wu X, You Y W, Kong X S, Chen J L, Luo G N, Lu G H, Liu C S, Wang Z 2016 Acta Mater. 120 315Google Scholar

    [22]

    孟凡顺, 李久会, 赵星 2014 物理学报 23 237102Google Scholar

    Meng F, Li J H, Zhao X 2014 Acta Phys. Sin. 23 237102Google Scholar

    [23]

    Tang F, Liu X, Wang H, Hou C, Lu H, Nie Z, Song X 2019 Nanoscale 11 1813Google Scholar

    [24]

    Scheiber D, Pippan R, Puschnig P, Ruban A, Romaner L 2016 Int. J. Refract. Met. Hard Mater. 60 75Google Scholar

    [25]

    Segall M D, Lindan P J D, Probert M J 2002 J. Phys.:Condens. Matter 14 2717Google Scholar

    [26]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [28]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566Google Scholar

    [29]

    Pfrommer B G, Cote M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233Google Scholar

    [30]

    Scheiber D, Razumovskiy V I, Puschnig P, Pippan R, Romaner L 2015 Acta Mater. 88 180Google Scholar

    [31]

    Zdanuk E J, Krock R H 1969 US Patent 3 423 203

    [32]

    Chelikowsky J R, Cohen M L 1976 Phys. Rev. B 14 556Google Scholar

    [33]

    Trelewicz J R, Schuh C A 2009 Phys. Rev. B 79 094112Google Scholar

    [34]

    Asta M, Wolverton C, Ozoliņš V 2004 Phys. Rev. B 69 144109Google Scholar

计量
  • 文章访问数:  9184
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-10
  • 修回日期:  2019-02-19
  • 上网日期:  2019-03-23
  • 刊出日期:  2019-04-05

/

返回文章
返回